Over the past few years, research has witnessed the advancement of deep learning models trained on large datasets, some even encompassing millions of examples. While these impressive performance on their hidden test sets, they often underperform when assessed on external datasets. Recognizing the critical role of generalization in medical AI development, many prestigious journals now require reporting results both on the local hidden test set as well as on external datasets before considering a study for publication. Effectively, the field of medical AI has transitioned from the traditional usage of a single dataset that is split into train and test to a more comprehensive framework using multiple datasets, some of which are used for model development (source domain) and others for testing (target domains). However, this new experimental setting does not necessarily resolve the challenge of generalization. This is because of the variability encountered in intended use and specificities across hospital cultures making the idea of universally generalizable systems a myth. On the other hand, the systematic, and a fortiori recurrent re-calibration, of models at the individual hospital level, although ideal, may be overoptimistic given the legal, regulatory and technical challenges that are involved. Re-calibration using transfer learning may not even be possible in some instances where reference labels of target domains are not available. In this perspective we establish a hierarchical three-level scale system reflecting the generalization level of a medical AI algorithm. This scale better reflects the diversity of real-world medical scenarios per which target domain data for re-calibration of models may or not be available and if it is, may or not have reference labels systematically available.
While Hopfield networks are known as paradigmatic models for memory storage and retrieval, modern artificial intelligence systems mainly stand on the machine learning paradigm. We show that it is possible to formulate a teacher-student self-supervised learning problem with Boltzmann machines in terms of a suitable generalization of the Hopfield model with structured patterns, where the spin variables are the machine weights and patterns correspond to the training set's examples. We analyze the learning performance by studying the phase diagram in terms of the training set size, the dataset noise and the inference temperature (i.e. the weight regularization). With a small but informative dataset the machine can learn by memorization. With a noisy dataset, an extensive number of examples above a critical threshold is needed. In this regime the memory storage limits of the system becomes an opportunity for the occurrence of a learning regime in which the system can generalize.
Accumulated Local Effects (ALE) is a model-agnostic approach for global explanations of the results of black-box machine learning (ML) algorithms. There are at least three challenges with conducting statistical inference based on ALE: ensuring the reliability of ALE analyses, especially in the context of small datasets; intuitively characterizing a variable's overall effect in ML; and making robust inferences from ML data analysis. In response, we introduce innovative tools and techniques for statistical inference using ALE, establishing bootstrapped confidence intervals tailored to dataset size and introducing ALE effect size measures that intuitively indicate effects on both the outcome variable scale and a normalized scale. Furthermore, we demonstrate how to use these tools to draw reliable statistical inferences, reflecting the flexible patterns ALE adeptly highlights, with implementations available in the 'ale' package in R. This work propels the discourse on ALE and its applicability in ML and statistical analysis forward, offering practical solutions to prevailing challenges in the field.
Bayesian model-averaged hypothesis testing is an important technique in regression because it addresses the problem that the evidence one variable directly affects an outcome often depends on which other variables are included in the model. This problem is caused by confounding and mediation, and is pervasive in big data settings with thousands of variables. However, model-averaging is under-utilized in fields, like epidemiology, where classical statistical approaches dominate. Here we show that simultaneous Bayesian and frequentist model-averaged hypothesis testing is possible in large samples, for a family of priors. We show that Bayesian model-averaged regression is a closed testing procedure, and use the theory of regular variation to derive interchangeable posterior odds and $p$-values that jointly control the Bayesian false discovery rate (FDR), the frequentist type I error rate, and the frequentist familywise error rate (FWER). These results arise from an asymptotic chi-squared distribution for the model-averaged deviance, under the null hypothesis. We call the approach 'Doublethink'. In a related manuscript (Arning, Fryer and Wilson, 2024), we apply it to discovering direct risk factors for COVID-19 hospitalization in UK Biobank, and we discuss its broader implications for bridging the differences between Bayesian and frequentist hypothesis testing.
Despite numerous years of research into the merits and trade-offs of various model selection criteria, obtaining robust results that elucidate the behavior of cross-validation remains a challenging endeavor. In this paper, we highlight the inherent limitations of cross-validation when employed to discern the structure of a Gaussian graphical model. We provide finite-sample bounds on the probability that the Lasso estimator for the neighborhood of a node within a Gaussian graphical model, optimized using a prediction oracle, misidentifies the neighborhood. Our results pertain to both undirected and directed acyclic graphs, encompassing general, sparse covariance structures. To support our theoretical findings, we conduct an empirical investigation of this inconsistency by contrasting our outcomes with other commonly used information criteria through an extensive simulation study. Given that many algorithms designed to learn the structure of graphical models require hyperparameter selection, the precise calibration of this hyperparameter is paramount for accurately estimating the inherent structure. Consequently, our observations shed light on this widely recognized practical challenge.
Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as O(T^2 polylog(n)), where n is the size of the models and T is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.
Generative AI, such as image generation models and large language models, stands to provide tremendous value to end-user programmers in creative and knowledge workflows. Current research methods struggle to engage end-users in a realistic conversation that balances the actually existing capabilities of generative AI with the open-ended nature of user workflows and the many opportunities for the application of this technology. In this work-in-progress paper, we introduce participatory prompting, a method for eliciting opportunities for generative AI in end-user workflows. The participatory prompting method combines a contextual inquiry and a researcher-mediated interaction with a generative model, which helps study participants interact with a generative model without having to develop prompting strategies of their own. We discuss the ongoing development of a study whose aim will be to identify end-user programming opportunities for generative AI in data analysis workflows.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.