亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We focus on the continual learning problem where the tasks arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks. In contrast to the continual learning literature focusing on the centralized setting, we investigate the distributed estimation framework. We consider the well-established distributed learning algorithm CoCoA. We derive closed form expressions for the iterations for the overparametrized case. We illustrate the convergence and the error performance of the algorithm based on the over/under-parametrization of the problem. Our results show that depending on the problem dimensions and data generation assumptions, CoCoA can perform continual learning over a sequence of tasks, i.e., it can learn a new task without forgetting previously learned tasks, with access only to one task at a time.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

This paper presents a novel mechanism design for multi-item auction settings with uncertain bidders' type distributions. Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids, and is built upon the Vickrey-Clarke-Groves (VCG) mechanism, ensuring satisfaction of Bayesian incentive compatibility (BIC) and $\delta$-individual rationality (IR). To further enhance the efficiency of our mechanism, we introduce two novel strategies for query reduction: a filtering method that screens potential winners' value regions within the confidence intervals generated by our estimated distribution, and a classification strategy that designates the lower bound of an interval as the estimated type when the length is below a threshold value. Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue maximization and query reduction, particularly in large-scale scenarios. This makes our proposed mechanism a highly desirable and effective option for sellers in the realm of multi-item auctions.

Online meta-learning has recently emerged as a marriage between batch meta-learning and online learning, for achieving the capability of quick adaptation on new tasks in a lifelong manner. However, most existing approaches focus on the restrictive setting where the distribution of the online tasks remains fixed with known task boundaries. In this work, we relax these assumptions and propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments. More specifically, we first propose two simple but effective detection mechanisms of task switches and distribution shift based on empirical observations, which serve as a key building block for more elegant online model updates in our algorithm: the task switch detection mechanism allows reusing of the best model available for the current task at hand, and the distribution shift detection mechanism differentiates the meta model update in order to preserve the knowledge for in-distribution tasks and quickly learn the new knowledge for out-of-distribution tasks. In particular, our online meta model updates are based only on the current data, which eliminates the need of storing previous data as required in most existing methods. We further show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions. Empirical studies on three different benchmarks clearly demonstrate the significant advantage of our algorithm over related baseline approaches.

Gradient Balancing (GraB) is a recently proposed technique that finds provably better data permutations when training models with multiple epochs over a finite dataset. It converges at a faster rate than the widely adopted Random Reshuffling, by minimizing the discrepancy of the gradients on adjacently selected examples. However, GraB only operates under critical assumptions such as small batch sizes and centralized data, leaving open the question of how to order examples at large scale -- i.e. distributed learning with decentralized data. To alleviate the limitation, in this paper we propose D-GraB that involves two novel designs: (1) $\textsf{PairBalance}$ that eliminates the requirement to use stale gradient mean in GraB which critically relies on small learning rates; (2) an ordering protocol that runs $\textsf{PairBalance}$ in a distributed environment with negligible overhead, which benefits from both data ordering and parallelism. We prove D-GraB enjoys linear speed up at rate $\tilde{O}((mnT)^{-2/3})$ on smooth non-convex objectives and $\tilde{O}((mnT)^{-2})$ under PL condition, where $n$ denotes the number of parallel workers, $m$ denotes the number of examples per worker and $T$ denotes the number of epochs. Empirically, we show on various applications including GLUE, CIFAR10 and WikiText-2 that D-GraB outperforms naive parallel GraB and Distributed Random Reshuffling in terms of both training and validation performance.

In the dominant paradigm for designing equitable machine learning systems, one works to ensure that model predictions satisfy various fairness criteria, such as parity in error rates across race, gender, and other legally protected traits. That approach, however, typically ignores the downstream decisions and outcomes that predictions affect, and, as a result, can induce unexpected harms. Here we present an alternative framework for fairness that directly anticipates the consequences of decisions. Stakeholders first specify preferences over the possible outcomes of an algorithmically informed decision-making process. For example, lenders may prefer extending credit to those most likely to repay a loan, while also preferring similar lending rates across neighborhoods. One then searches the space of decision policies to maximize the specified utility. We develop and describe a method for efficiently learning these optimal policies from data for a large family of expressive utility functions, facilitating a more holistic approach to equitable decision-making.

We address the problem of validating the ouput of clustering algorithms. Given data $\mathcal{D}$ and a partition $\mathcal{C}$ of these data into $K$ clusters, when can we say that the clusters obtained are correct or meaningful for the data? This paper introduces a paradigm in which a clustering $\mathcal{C}$ is considered meaningful if it is good with respect to a loss function such as the K-means distortion, and stable, i.e. the only good clustering up to small perturbations. Furthermore, we present a generic method to obtain post-inference guarantees of near-optimality and stability for a clustering $\mathcal{C}$. The method can be instantiated for a variety of clustering criteria (also called loss functions) for which convex relaxations exist. Obtaining the guarantees amounts to solving a convex optimization problem. We demonstrate the practical relevance of this method by obtaining guarantees for the K-means and the Normalized Cut clustering criteria on realistic data sets. We also prove that asymptotic instability implies finite sample instability w.h.p., allowing inferences about the population clusterability from a sample. The guarantees do not depend on any distributional assumptions, but they depend on the data set $\mathcal{D}$ admitting a stable clustering.

The analysis of data stored in multiple sites has become more popular, raising new concerns about the security of data storage and communication. Federated learning, which does not require centralizing data, is a common approach to preventing heavy data transportation, securing valued data, and protecting personal information protection. Therefore, determining how to aggregate the information obtained from the analysis of data in separate local sites has become an important statistical issue. The commonly used averaging methods may not be suitable due to data nonhomogeneity and incomparable results among individual sites, and applying them may result in the loss of information obtained from the individual analyses. Using a sequential method in federated learning with distributed computing can facilitate the integration and accelerate the analysis process. We develop a data-driven method for efficiently and effectively aggregating valued information by analyzing local data without encountering potential issues such as information security and heavy transportation due to data communication. In addition, the proposed method can preserve the properties of classical sequential adaptive design, such as data-driven sample size and estimation precision when applied to generalized linear models. We use numerical studies of simulated data and an application to COVID-19 data collected from 32 hospitals in Mexico, to illustrate the proposed method.

This work proposes a new method to sequentially train deep neural networks on multiple tasks without suffering catastrophic forgetting, while endowing it with the capability to quickly adapt to unseen tasks. Starting from existing work on network masking (Wortsman et al., 2020), we show that simply learning a linear combination of a small number of task-specific supermasks (impressions) on a randomly initialized backbone network is sufficient to both retain accuracy on previously learned tasks, as well as achieve high accuracy on unseen tasks. In contrast to previous methods, we do not require to generate dedicated masks or contexts for each new task, instead leveraging transfer learning to keep per-task parameter overhead small. Our work illustrates the power of linearly combining individual impressions, each of which fares poorly in isolation, to achieve performance comparable to a dedicated mask. Moreover, even repeated impressions from the same task (homogeneous masks), when combined, can approach the performance of heterogeneous combinations if sufficiently many impressions are used. Our approach scales more efficiently than existing methods, often requiring orders of magnitude fewer parameters and can function without modification even when task identity is missing. In addition, in the setting where task labels are not given at inference, our algorithm gives an often favorable alternative to the one-shot procedure used by Wortsman et al., 2020. We evaluate our method on a number of well-known image classification datasets and network architectures.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

北京阿比特科技有限公司