Large language models (LLMs) are being rapidly developed, and a key component of their widespread deployment is their safety-related alignment. Many red-teaming efforts aim to jailbreak LLMs, where among these efforts, the Greedy Coordinate Gradient (GCG) attack's success has led to a growing interest in the study of optimization-based jailbreaking techniques. Although GCG is a significant milestone, its attacking efficiency remains unsatisfactory. In this paper, we present several improved (empirical) techniques for optimization-based jailbreaks like GCG. We first observe that the single target template of "Sure" largely limits the attacking performance of GCG; given this, we propose to apply diverse target templates containing harmful self-suggestion and/or guidance to mislead LLMs. Besides, from the optimization aspects, we propose an automatic multi-coordinate updating strategy in GCG (i.e., adaptively deciding how many tokens to replace in each step) to accelerate convergence, as well as tricks like easy-to-hard initialisation. Then, we combine these improved technologies to develop an efficient jailbreak method, dubbed $\mathcal{I}$-GCG. In our experiments, we evaluate on a series of benchmarks (such as NeurIPS 2023 Red Teaming Track). The results demonstrate that our improved techniques can help GCG outperform state-of-the-art jailbreaking attacks and achieve nearly 100% attack success rate. The code is released at //github.com/jiaxiaojunQAQ/I-GCG.
Large language models (LLMs), renowned for their powerful conversational abilities, are widely recognized as exceptional tools in the field of education, particularly in the context of automated intelligent instruction systems for language learning. In this paper, we propose a scoring system based on LLMs, motivated by their positive impact on text-related scoring tasks. Specifically, the speech encoder first maps the learner's speech into contextual features. The adapter layer then transforms these features to align with the text embedding in latent space. The assessment task-specific prefix and prompt text are embedded and concatenated with the features generated by the modality adapter layer, enabling the LLMs to predict accuracy and fluency scores. Our experiments demonstrate that the proposed scoring systems achieve competitive results compared to the baselines on the Speechocean762 datasets. Moreover, we also conducted an ablation study to better understand the contributions of the prompt text and training strategy in the proposed scoring system.
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts against various target aligned LLMs. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark while preserving the human readability of the generated prompts. Detailed analysis highlights the unique advantages brought by the proposed reward misspecification objective compared to previous methods.
Large language models (LLMs) have made significant advancements in natural language understanding. However, through that enormous semantic representation that the LLM has learnt, is it somehow possible for it to understand images as well? This work investigates this question. To enable the LLM to process images, we convert them into a representation given by Scalable Vector Graphics (SVG). To study what the LLM can do with this XML-based textual description of images, we test the LLM on three broad computer vision tasks: (i) visual reasoning and question answering, (ii) image classification under distribution shift, few-shot learning, and (iii) generating new images using visual prompting. Even though we do not naturally associate LLMs with any visual understanding capabilities, our results indicate that the LLM can often do a decent job in many of these tasks, potentially opening new avenues for research into LLMs' ability to understand image data. Our code, data, and models can be found here //github.com/mu-cai/svg-llm.
Large language models (LLMs) are remarkably good at writing code. A particularly valuable case of human-LLM collaboration is code-based UI prototyping, a method for creating interactive prototypes that allows users to view and fully engage with a user interface. We conduct a formative study of GPT Pilot, a leading LLM-generated code-prototyping system, and find that its inflexibility towards change once development has started leads to weaknesses in failure prevention and dynamic planning; it closely resembles the linear workflow of the waterfall model. We introduce DIDUP, a system for code-based UI prototyping that follows an iterative spiral model, which takes changes and iterations that come up during the development process into account. We propose three novel mechanisms for LLM-generated code-prototyping systems: (1) adaptive planning, where plans should be dynamic and reflect changes during implementation, (2) code injection, where the system should write a minimal amount of code and inject it instead of rewriting code so users have a better mental model of the code evolution, and (3) lightweight state management, a simplified version of source control so users can quickly revert to different working states. Together, this enables users to rapidly develop and iterate on prototypes.
Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.