亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time-variant standard Sylvester-conjugate matrix equations are presented as early time-variant versions of the complex conjugate matrix equations. Current solving methods include Con-CZND1 and Con-CZND2 models, both of which use ode45 for continuous model. Given practical computational considerations, discrete these models is also important. Based on Euler-forward formula discretion, Con-DZND1-2i model and Con-DZND2-2i model are proposed. Numerical experiments using step sizes of 0.1 and 0.001. The above experiments show that Con-DZND1-2i model and Con-DZND2-2i model exhibit different neural dynamics compared to their continuous counterparts, such as trajectory correction in Con-DZND2-2i model and the swallowing phenomenon in Con-DZND1-2i model, with convergence affected by step size. These experiments highlight the differences between optimizing sampling discretion errors and space compressive approximation errors in neural dynamics.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 有向 · 泛函 · 向量化 · FAST ·
2024 年 12 月 16 日

This paper presents a fast and robust numerical method for reconstructing point-like sources in the time-harmonic Maxwell's equations given Cauchy data at a fixed frequency. This is an electromagnetic inverse source problem with broad applications, such as antenna synthesis and design, medical imaging, and pollution source tracing. We introduce new imaging functions and a computational algorithm to determine the number of point sources, their locations, and associated moment vectors, even when these vectors have notably different magnitudes. The number of sources and locations are estimated using significant peaks of the imaging functions, and the moment vectors are computed via explicitly simple formulas. The theoretical analysis and stability of the imaging functions are investigated, where the main challenge lies in analyzing the behavior of the dot products between the columns of the imaginary part of the Green's tensor and the unknown moment vectors. Additionally, we extend our method to reconstruct small-volume sources using an asymptotic expansion of their radiated electric field. We provide numerical examples in three dimensions to demonstrate the performance of our method.

This paper addresses the inverse scattering problem for Maxwell's equations. We first show that a bianisotropic scatterer can be uniquely determined from multi-static far-field data through the factorization analysis of the far-field operator. Next, we investigate a modified version of the orthogonality sampling method, as proposed in \cite{Le2022}, for the numerical reconstruction of the scatterer. Finally, we apply this sampling method to invert unprocessed 3D experimental data obtained from the Fresnel Institute \cite{Geffrin2009}. Numerical examples with synthetic scattering data for bianisotropic targets are also presented to demonstrate the effectiveness of the method.

High-dimensional parabolic partial differential equations (PDEs) often involve large-scale Hessian matrices, which are computationally expensive for deep learning methods relying on automatic differentiation to compute derivatives. This work aims to address this issue. In the proposed method, the PDE is reformulated into a martingale formulation, which allows the computation of loss functions to be derivative-free and parallelized in time-space domain. Then, the martingale formulation is enforced using a Galerkin method via adversarial learning techniques, which eliminate the need of computing conditional expectations in the margtingale property. This method is further extended to solve Hamilton-Jacobi-Bellman (HJB) equations and the associated Stochastic optimal control problems, enabling the simultaneous solution of the value function and optimal feedback control in a derivative-free manner. Numerical results demonstrate the effectiveness and efficiency of the proposed method, capable of solving HJB equations accurately with dimensionality up to 10,000.

A new variant of the GMRES method is presented for solving linear systems with the same matrix and subsequently obtained multiple right-hand sides. The new method keeps such properties of the classical GMRES algorithm as follows. Both bases of the search space and its image are maintained orthonormal that increases the robustness of the method. Moreover there is no need to store both bases since they are effectively represented within a common basis. Along with it our method is theoretically equivalent to the GCR method extended for a case of multiple right-hand sides but is more numerically robust and requires less memory. The main result of the paper is a mechanism of adding an arbitrary direction vector to the search space that can be easily adopted for flexible GMRES or GMRES with deflated restarting.

We propose and analyse a boundary-preserving numerical scheme for the weak approximations of some stochastic partial differential equations (SPDEs) with bounded state-space. We impose regularity assumptions on the drift and diffusion coefficients only locally on the state-space. In particular, the drift and diffusion coefficients may be non-globally Lipschitz continuous and superlinearly growing. The scheme consists of a finite difference discretisation in space and a Lie--Trotter splitting followed by exact simulation and exact integration in time. We prove weak convergence of optimal order 1/4 for globally Lipschitz continuous test functions of the scheme by proving strong convergence towards a strong solution driven by a different noise process. Boundary-preservation is ensured by the use of Lie--Trotter time splitting followed by exact simulation and exact integration. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed Lie--Trotter-Exact (LTE) scheme compared to existing methods for SPDEs.

The phenomenon of finite time blow-up in hydrodynamic partial differential equations is central in analysis and mathematical physics. While numerical studies have guided theoretical breakthroughs, it is challenging to determine if the observed computational results are genuine or mere numerical artifacts. Here we identify numerical signatures of blow-up. Our study is based on the complexified Euler equations in two dimensions, where instant blow-up is expected. Via a geometrically consistent spatiotemporal discretization, we perform several numerical experiments and verify their computational stability. We then identify a signature of blow-up based on the growth rates of the supremum norm of the vorticity with increasing spatial resolution. The study aims to be a guide for cross-checking the validity for future numerical experiments of suspected blow-up in equations where the analysis is not yet resolved.

The dynamics of magnetization in ferromagnetic materials are modeled by the Landau-Lifshitz equation, which presents significant challenges due to its inherent nonlinearity and non-convex constraint. These complexities necessitate efficient numerical methods for micromagnetics simulations. The Gauss-Seidel Projection Method (GSPM), first introduced in 2001, is among the most efficient techniques currently available. However, existing GSPMs are limited to first-order accuracy. This paper introduces two novel second-order accurate GSPMs based on a combination of the biharmonic equation and the second-order backward differentiation formula, achieving computational complexity comparable to that of solving the scalar biharmonic equation implicitly. The first proposed method achieves unconditional stability through Gauss-Seidel updates, while the second method exhibits conditional stability with a Courant-Friedrichs-Lewy constant of 0.25. Through consistency analysis and numerical experiments, we demonstrate the efficacy and reliability of these methods. Notably, the first method displays unconditional stability in micromagnetics simulations, even when the stray field is updated only once per time step.

Parameter inference is essential when interpreting observational data using mathematical models. Standard inference methods for differential equation models typically rely on obtaining repeated numerical solutions of the differential equation(s). Recent results have explored how numerical truncation error can have major, detrimental, and sometimes hidden impacts on likelihood-based inference by introducing false local maxima into the log-likelihood function. We present a straightforward approach for inference that eliminates the need for solving the underlying differential equations, thereby completely avoiding the impact of truncation error. Open-access Jupyter notebooks, available on GitHub, allow others to implement this method for a broad class of widely-used models to interpret biological data.

In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.

We present a point set registration method in bounded domains based on the solution to the Fokker Planck equation. Our approach leverages (i) density estimation based on Gaussian mixture models; (ii) a stabilized finite element discretization of the Fokker Planck equation; (iii) a specialized method for the integration of the particles. We review relevant properties of the Fokker Planck equation that provide the foundations for the numerical method. We discuss two strategies for the integration of the particles and we propose a regularization technique to control the distance of the particles from the boundary of the domain. We perform extensive numerical experiments for two two-dimensional model problems to illustrate the many features of the method.

北京阿比特科技有限公司