亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential algorithms for the Stable Matching Problem are often too slow in the context of some large scale applications like switch scheduling. Parallel architectures can offer a notable decrease in runtime complexity. We propose a stable matching algorithm using n^2 processors that converges in O(nlog(n)) average runtime. The algorithm is structurally based on the Parallel Iterative Improvement (PII) algorithm, which successfully finds a stable matching in approximately 90% of cases. We suggest alternative selection methods for pairs in the PII algorithm, called Right-Minimum and Dynamic Selection, resulting in full convergence over 3.3 million trials and generally much faster termination.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入(ru)式系(xi)統編譯器、體系(xi)結(jie)構和(he)綜(zong)合國際會議。 Publisher:ACM。 SIT:

The roulette wheel selection is a critical process in heuristic algorithms, enabling the probabilistic choice of items based on assigned fitness values. It selects an item with a probability proportional to its fitness value. This technique is commonly employed in ant-colony algorithms to randomly determine the next city to visit when solving the traveling salesman problem. Our study focuses on parallel algorithms designed to select one of multiple processors, each associated with fitness values, using random wheel selection. We propose a novel approach called logarithmic random bidding, which achieves an expected runtime logarithmic to the number of processors with non-zero fitness values, using the CRCW-PRAM model with a shared memory of constant size. Notably, the logarithmic random bidding technique demonstrates efficient performance, particularly in scenarios where only a few processors are assigned non-zero fitness values.

The bottom-left algorithm is a simple heuristic for the Strip Packing Problem. It places the rectangles in the given order at the lowest free position in the strip, using the left most position in case of ties. Despite its simplicity, the exact approximation ratio of the bottom-left algorithm remains unknown. We will improve the more-than-40-year-old value for the lower bound from $5/4$ to $4/3 - \varepsilon$. Additionally, we will show that this lower bound holds even in the special case of squares, where the previously known lower bound was $12/11 -\varepsilon$. These lower bounds apply regardless of the ordering of the rectangles. When squares are arranged in the worst possible order, we establish a constant upper bound and a $10/3-\varepsilon$ lower bound for the approximation ratio of the bottom-left algorithm. This bound also applies to some online setting and yields an almost tight result there. Finally, we show that the approximation ratio of a local search algorithm based on permuting rectangles in the ordering of the bottom-left algorithm is at least~$2$ and that such an algorithm may need an exponential number of improvement steps to reach a local optimum.

Arora & Ge introduced a noise-free polynomial system to compute the secret of a Learning With Errors (LWE) instance via linearization. Albrecht et al. later utilized the Arora-Ge polynomial model to study the complexity of Gr\"obner basis computations on LWE polynomial systems under the assumption of semi-regularity. In this paper we revisit the Arora-Ge polynomial and prove that it satisfies a genericity condition recently introduced by Caminata & Gorla, called being in generic coordinates. For polynomial systems in generic coordinates one can always estimate the complexity of DRL Gr\"obner basis computations in terms of the Castelnuovo-Mumford regularity and henceforth also via the Macaulay bound. Moreover, we generalize the Gr\"obner basis algorithm of Semaev & Tenti to arbitrary polynomial systems with a finite degree of regularity. In particular, existence of this algorithm yields another approach to estimate the complexity of DRL Gr\"obner basis computations in terms of the degree of regularity. In practice, the degree of regularity of LWE polynomial systems is not known, though one can always estimate the lowest achievable degree of regularity. Consequently, from a designer's worst case perspective this approach yields sub-exponential complexity estimates for general, binary secret and binary error LWE. In recent works by Dachman-Soled et al. the hardness of LWE in the presence of side information was analyzed. Utilizing their framework we discuss how hints can be incorporated into LWE polynomial systems and how they affect the complexity of Gr\"obner basis computations.

Aggregated HPC resources have rigid allocation systems and programming models which struggle to adapt to diverse and changing workloads. Consequently, HPC systems fail to efficiently use the large pools of unused memory and increase the utilization of idle computing resources. Prior work attempted to increase the throughput and efficiency of supercomputing systems through workload co-location and resource disaggregation. However, these methods fall short of providing a solution that can be applied to existing systems without major hardware modifications and performance losses. In this paper, we improve the utilization of supercomputers by employing the new cloud paradigm of serverless computing. We show how serverless functions provide fine-grained access to the resources of batch-managed cluster nodes. We present an HPC-oriented Function-as-a-Service (FaaS) that satisfies the requirements of high-performance applications. We demonstrate a \emph{software resource disaggregation} approach where placing functions on unallocated and underutilized nodes allows idle cores and accelerators to be utilized while retaining near-native performance.

We use Markov categories to develop generalizations of the theory of Markov chains and hidden Markov models in an abstract setting. This comprises characterizations of hidden Markov models in terms of local and global conditional independences as well as existing algorithms for Bayesian filtering and smoothing applicable in all Markov categories with conditionals. We show that these algorithms specialize to existing ones such as the Kalman filter, forward-backward algorithm, and the Rauch-Tung-Striebel smoother when instantiated in appropriate Markov categories. Under slightly stronger assumptions, we also prove that the sequence of outputs of the Bayes filter is itself a Markov chain with a concrete formula for its transition maps. There are two main features of this categorical framework. The first is its generality, as it can be used in any Markov category with conditionals. In particular, it provides a systematic unified account of hidden Markov models and algorithms for filtering and smoothing in discrete probability, Gaussian probability, measure-theoretic probability, possibilistic nondeterminism and others at the same time. The second feature is the intuitive visual representation of information flow in these algorithms in terms of string diagrams.

We consider the two categories of termination problems of quantum programs with nondeterminism: 1) Is an input of a program terminating with probability one under all schedulers? If not, how can a scheduler be synthesized to evidence the nontermination? 2) Are all inputs terminating with probability one under their respective schedulers? If yes, a further question asks whether there is a scheduler that forces all inputs to be terminating with probability one together with how to synthesize it; otherwise, how can an input be provided to refute the universal termination? For the effective verification of the first category, we over-approximate the reachable set of quantum program states by the reachable subspace, whose algebraic structure is a linear space. On the other hand, we study the set of divergent states from which the program terminates with probability zero under some scheduler. The divergent set has an explicit algebraic structure. Exploiting them, we address the decision problem by a necessary and sufficient condition, i.e. the disjointness of the reachable subspace and the divergent set. Furthermore, the scheduler synthesis is completed in exponential time. For the second category, we reduce the decision problem to the existence of invariant subspace, from which the program terminates with probability zero under all schedulers. The invariant subspace is characterized by linear equations. The states on that invariant subspace are evidence of the nontermination. Furthermore, the scheduler synthesis is completed by seeking a pattern of finite schedulers that forces all inputs to be terminating with positive probability. The repetition of that pattern yields the desired universal scheduler that forces all inputs to be terminating with probability one. All the problems in the second category are shown to be solved in polynomial time.

We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) $n$-vertex graph $G$ along with $k$ terminal pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of $k$. Lochet's result implies the existence of a polynomial-time $ck$-approximation for Maximum Vertex-Disjoint Shortest Paths, where $c \leq 1$ is a constant. Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an $o(k)$-approximations within $f(k) \cdot $poly($n$) time for any function $f$ that only depends on $k$. Our second result demonstrates the infeasibility of achieving an approximation ratio of $n^{\frac{1}{2}-\varepsilon}$ in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a $\lceil\sqrt{\ell}\rceil$-approximation, where $\ell$ is the number of edges in all the paths of an optimal solution. Since $\ell \leq n$, this underscores the tightness of the $n^{\frac{1}{2}-\varepsilon}$-inapproximability bound. Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by $\ell$ but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.

Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve, but that any constant-depth classical circuit with bounded fan-in cannot. They also pose the question: Can we achieve a similar proof of separation for an input-independent sampling task? In this paper, we show that the answer to this question is yes when the number of random input bits given to the classical circuit is bounded. We introduce a distribution $D_{n}$ over $\{0,1\}^n$ and construct a constant-depth uniform quantum circuit family $\{C_n\}_n$ such that $C_n$ samples from a distribution close to $D_{n}$ in total variation distance. For any $\delta < 1$ we also prove, unconditionally, that any classical circuit with bounded fan-in gates that takes as input $kn + n^\delta$ i.i.d. Bernouli random variables with entropy $1/k$ and produces output close to $D_{n}$ in total variation distance has depth $\Omega(\log \log n)$. This gives an unconditional proof that constant-depth quantum circuits can sample from distributions that can't be reproduced by constant-depth bounded fan-in classical circuits, even up to additive error. We also show a similar separation between constant-depth quantum circuits with advice and classical circuits with bounded fan-in and fan-out, but access to an unbounded number of i.i.d random inputs. The distribution $D_n$ and classical circuit lower bounds are inspired by work of Viola, in which he shows a different (but related) distribution cannot be sampled from approximately by constant-depth bounded fan-in classical circuits.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司