亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a holistic design for GPU-accelerated computation in TrustZone TEE. Without pulling the complex GPU software stack into the TEE, we follow a simple approach: record the CPU/GPU interactions ahead of time, and replay the interactions in the TEE at run time. This paper addresses the approach's key missing piece -- the recording environment, which needs both strong security and access to diverse mobile GPUs. To this end, we present a novel architecture called CODY, in which a mobile device (which possesses the GPU hardware) and a trustworthy cloud service (which runs the GPU software) exercise the GPU hardware/software in a collaborative, distributed fashion. To overcome numerous network round trips and long delays, CODY contributes optimizations specific to mobile GPUs: register access deferral, speculation, and metastate-only synchronization. With these optimizations, recording a compute workload takes only tens of seconds, which is up to 95% less than a naive approach; replay incurs 25% lower delays compared to insecure, native execution.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · GPU · state-of-the-art · 回合 · 劃分 ·
2022 年 1 月 6 日

Voxel grids are a minimal and efficient environment representation that is used for robot motion planning in numerous tasks. Many state-of-the-art planning algorithms use voxel grids composed of free, occupied and unknown voxels. In this paper we propose a new GPU accelerated algorithm for partitioning the space into a voxel grid with occupied, free and unknown voxels. The proposed approach is low latency and suitable for high speed navigation.

Cloud computing is an opened and distributed network that guarantees access to a large amount of data and IT infrastructure at several levels (software, hardware...). With the increase demand, handling clients' needs is getting increasingly challenging. Responding to all requesting clients could lead to security breaches, and since it is the provider's responsibility to secure not only the offered cloud services but also the data, it is important to ensure clients reliability. Although filtering clients in the cloud is not so common, it is required to assure cloud safety. In this paper, by implementing multi agent systems in the cloud to handle interactions for the providers, trust is introduced at agent level to filtrate the clients asking for services by using Particle Swarm Optimization and acquaintance knowledge to determine malicious and untrustworthy clients. The selection depends on previous knowledge and overall rating of trusted peers. The conducted experiments show that the model outputs relevant results, and even with a small number of peers, the framework is able to converge to the best solution. The model presented in this paper is a part of ongoing work to adapt interactions in the cloud.

Neighbor search is of fundamental important to many engineering and science fields such as physics simulation and computer graphics. This paper proposes to formulate neighbor search as a ray tracing problem and leverage the dedicated ray tracing hardware in recent GPUs for acceleration. We show that a naive mapping under-exploits the ray tracing hardware. We propose two performance optimizations, query scheduling and query partitioning, to tame the inefficiencies. Experimental results show 2.2X -- 65.0X speedups over existing neighbor search libraries on GPUs. The code is available at //github.com/horizon-research/rtnn.

Secure Multi-Party Computation (SMPC) allows a set of parties to securely compute a functionality in a distributed fashion without the need for any trusted external party. Usually, it is assumed that the parties know each other and have already established authenticated channels among each other. However, in practice the parties sometimes must stay anonymous. In this paper, we conceptualize a framework that enables the repeated execution of an SMPC protocol for a given functionality such that the parties can keep their participation in the protocol executions private and at the same time be sure that only authorized parties may take part in a protocol execution. We identify the security properties that an implementation of our framework must meet and introduce a first implementation of the framework that achieves these properties.

Deep reinforcement learning (DRL) is one promising approach to teaching robots to perform complex tasks. Because methods that directly reuse the stored experience data cannot follow the change of the environment in robotic problems with a time-varying environment, online DRL is required. The eligibility traces method is well known as an online learning technique for improving sample efficiency in traditional reinforcement learning with linear regressors rather than DRL. The dependency between parameters of deep neural networks would destroy the eligibility traces, which is why they are not integrated with DRL. Although replacing the gradient with the most influential one rather than accumulating the gradients as the eligibility traces can alleviate this problem, the replacing operation reduces the number of reuses of previous experiences. To address these issues, this study proposes a new eligibility traces method that can be used even in DRL while maintaining high sample efficiency. When the accumulated gradients differ from those computed using the latest parameters, the proposed method takes into account the divergence between the past and latest parameters to adaptively decay the eligibility traces. Bregman divergences between outputs computed by the past and latest parameters are exploited due to the infeasible computational cost of the divergence between the past and latest parameters. In addition, a generalized method with multiple time-scale traces is designed for the first time. This design allows for the replacement of the most influential adaptively accumulated (decayed) eligibility traces.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

We introduce a real-time, high-resolution background replacement technique which operates at 30fps in 4K resolution, and 60fps for HD on a modern GPU. Our technique is based on background matting, where an additional frame of the background is captured and used in recovering the alpha matte and the foreground layer. The main challenge is to compute a high-quality alpha matte, preserving strand-level hair details, while processing high-resolution images in real-time. To achieve this goal, we employ two neural networks; a base network computes a low-resolution result which is refined by a second network operating at high-resolution on selective patches. We introduce two largescale video and image matting datasets: VideoMatte240K and PhotoMatte13K/85. Our approach yields higher quality results compared to the previous state-of-the-art in background matting, while simultaneously yielding a dramatic boost in both speed and resolution.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Most Deep Reinforcement Learning (Deep RL) algorithms require a prohibitively large number of training samples for learning complex tasks. Many recent works on speeding up Deep RL have focused on distributed training and simulation. While distributed training is often done on the GPU, simulation is not. In this work, we propose using GPU-accelerated RL simulations as an alternative to CPU ones. Using NVIDIA Flex, a GPU-based physics engine, we show promising speed-ups of learning various continuous-control, locomotion tasks. With one GPU and CPU core, we are able to train the Humanoid running task in less than 20 minutes, using 10-1000x fewer CPU cores than previous works. We also demonstrate the scalability of our simulator to multi-GPU settings to train more challenging locomotion tasks.

Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.

北京阿比特科技有限公司