亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dealing with atypical traffic scenarios remains a challenging task in autonomous driving. However, most anomaly detection approaches cannot be trained on raw sensor data but require exposure to outlier data and powerful semantic segmentation models trained in a supervised fashion. This limits the representation of normality to labeled data, which does not scale well. In this work, we revisit unsupervised anomaly detection and present UMAD, leveraging generative world models and unsupervised image segmentation. Our method outperforms state-of-the-art unsupervised anomaly detection.

相關內容

We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 2,400 expert-annotated examples, divided into three subsets: information extraction, numerical reasoning, and knowledge-intensive reasoning, each addressing common scenarios encountered in real-world financial contexts. We assess a broad spectrum of LLMs under long-context and RAG settings. Our results show that even the current best-performing system, GPT-4o, still lags behind human experts. We further provide in-depth analysis on long-context and RAG setting, Chain-of-Thought reasoning, and model reasoning errors, offering insights to drive future advancements. We believe that FinDVer can serve as a valuable benchmark for evaluating LLMs in claim verification over complex, expert-domain documents.

Despite existing 3D cloth simulators producing realistic results, they predominantly operate on discrete surface representations (e.g. points and meshes) with a fixed spatial resolution, which often leads to large memory consumption and resolution-dependent simulations. Moreover, back-propagating gradients through the existing solvers is difficult, and they cannot be easily integrated into modern neural architectures. In response, this paper re-thinks physically plausible cloth simulation: We propose NeuralClothSim, i.e., a new quasistatic cloth simulator using thin shells, in which surface deformation is encoded in neural network weights in the form of a neural field. Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields (NDFs); it supervises NDF equilibria with the laws of the non-linear Kirchhoff-Love shell theory with a non-linear anisotropic material model. NDFs are adaptive: They 1) allocate their capacity to the deformation details and 2) allow surface state queries at arbitrary spatial resolutions without re-training. We show how to train NeuralClothSim while imposing hard boundary conditions and demonstrate multiple applications, such as material interpolation and simulation editing. The experimental results highlight the effectiveness of our continuous neural formulation. See our project page: //4dqv.mpi-inf.mpg.de/NeuralClothSim/.

We introduce LDAdam, a memory-efficient optimizer for training large models, that performs adaptive optimization steps within lower dimensional subspaces, while consistently exploring the full parameter space during training. This strategy keeps the optimizer's memory footprint to a fraction of the model size. LDAdam relies on a new projection-aware update rule for the optimizer states that allows for transitioning between subspaces, i.e., estimation of the statistics of the projected gradients. To mitigate the errors due to low-rank projection, LDAdam integrates a new generalized error feedback mechanism, which explicitly accounts for both gradient and optimizer state compression. We prove the convergence of LDAdam under standard assumptions, and show that LDAdam allows for accurate and efficient fine-tuning and pre-training of language models.

Integrating textual data with imaging in liver tumor segmentation is essential for enhancing diagnostic accuracy. However, current multi-modal medical datasets offer only general text annotations, lacking lesion-specific details critical for extracting nuanced features, especially for fine-grained segmentation of tumor boundaries and small lesions. To address these limitations, we developed datasets with lesion-specific text annotations for liver tumors and introduced the TexLiverNet model. TexLiverNet employs an agent-based cross-attention module that integrates text features efficiently with visual features, significantly reducing computational costs. Additionally, enhanced spatial and adaptive frequency domain perception is proposed to precisely delineate lesion boundaries, reduce background interference, and recover fine details in small lesions. Comprehensive evaluations on public and private datasets demonstrate that TexLiverNet achieves superior performance compared to current state-of-the-art methods.

The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.

Retrieval augmented generation (RAG) models, which integrate large-scale pre-trained generative models with external retrieval mechanisms, have shown significant success in various natural language processing (NLP) tasks. However, applying RAG models in Persian language as a low-resource language, poses distinct challenges. These challenges primarily involve the preprocessing, embedding, retrieval, prompt construction, language modeling, and response evaluation of the system. In this paper, we address the challenges towards implementing a real-world RAG system for Persian language called PersianRAG. We propose novel solutions to overcome these obstacles and evaluate our approach using several Persian benchmark datasets. Our experimental results demonstrate the capability of the PersianRAG framework to enhance question answering task in Persian.

Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at //github.com/ibndias/CIPHER.

Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.

As the demand for efficient data processing escalates, reconfigurable analog hardware which implements novel analog compute paradigms, is promising for energy-efficient computing at the sensing and actuation boundaries. These analog computing platforms embed information in physical properties and then use the physics of materials, devices, and circuits to perform computation. These hardware platforms are more sensitive to nonidealities, such as noise and fabrication variations, than their digital counterparts and accrue high resource costs when programmable elements are introduced. Identifying resource-efficient analog system designs that mitigate these nonidealities is done manually today. While design optimization frameworks have been enormously successful in other fields, such as photonics, they typically either target linear dynamical systems that have closed-form solutions or target a specific differential equation system and then derive the solution through hand analysis. In both cases, time-domain simulation is no longer needed to predict hardware behavior. In contrast, described analog hardware platforms have nonlinear time-evolving dynamics that vary substantially from design to design, lack closed-form solutions, and require the optimizer to consider time explicitly. We present Shem, an optimization framework for analog systems. Shem leverages differentiation methods recently popularized to train neural ODEs to enable the optimization of analog systems that exhibit nonlinear dynamics, noise and mismatch, and discrete behavior. We evaluate Shem on oscillator-based pattern recognizer, CNN edge detector, and transmission-line security primitive design case studies and demonstrate it can improve designs. To our knowledge, the latter two design problems have not been optimized with automated methods before.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司