亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Speaker embeddings carry valuable emotion-related information, which makes them a promising resource for enhancing speech emotion recognition (SER), especially with limited labeled data. Traditionally, it has been assumed that emotion information is indirectly embedded within speaker embeddings, leading to their under-utilization. Our study reveals a direct and useful link between emotion and state-of-the-art speaker embeddings in the form of intra-speaker clusters. By conducting a thorough clustering analysis, we demonstrate that emotion information can be readily extracted from speaker embeddings. In order to leverage this information, we introduce a novel contrastive pretraining approach applied to emotion-unlabeled data for speech emotion recognition. The proposed approach involves the sampling of positive and the negative examples based on the intra-speaker clusters of speaker embeddings. The proposed strategy, which leverages extensive emotion-unlabeled data, leads to a significant improvement in SER performance, whether employed as a standalone pretraining task or integrated into a multi-task pretraining setting.

相關內容

This study aims to address the pervasive challenge of quantifying uncertainty in large language models (LLMs) without logit-access. Conformal Prediction (CP), known for its model-agnostic and distribution-free features, is a desired approach for various LLMs and data distributions. However, existing CP methods for LLMs typically assume access to the logits, which are unavailable for some API-only LLMs. In addition, logits are known to be miscalibrated, potentially leading to degraded CP performance. To tackle these challenges, we introduce a novel CP method that (1) is tailored for API-only LLMs without logit-access; (2) minimizes the size of prediction sets; and (3) ensures a statistical guarantee of the user-defined coverage. The core idea of this approach is to formulate nonconformity measures using both coarse-grained (i.e., sample frequency) and fine-grained uncertainty notions (e.g., semantic similarity). Experimental results on both close-ended and open-ended Question Answering tasks show our approach can mostly outperform the logit-based CP baselines.

Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.

As a common image editing operation, image composition aims to combine the foreground from one image and another background image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which includes appearance inconsistency (e.g., incompatible illumination), geometry inconsistency (e.g., unreasonable size), and semantic inconsistency (e.g., mismatched semantic context). Image composition task could be decomposed into multiple sub-tasks, in which each sub-task targets at one or more issues. Specifically, object placement aims to find reasonable scale, location, and shape for the foreground. Image blending aims to address the unnatural boundary between foreground and background. Image harmonization aims to adjust the illumination statistics of foreground. Shadow generation aims to generate plausible shadow for the foreground. These sub-tasks can be executed sequentially or parallelly to acquire realistic composite images. To the best of our knowledge, there is no previous survey on image composition. In this paper, we conduct comprehensive survey over the sub-tasks and combinatorial task of image composition. For each one, we summarize the existing methods, available datasets, and common evaluation metrics. Datasets and codes for image composition are summarized at //github.com/bcmi/Awesome-Image-Composition. We have also contributed the first image composition toolbox: libcom //github.com/bcmi/libcom, which assembles 10+ image composition related functions (e.g., image blending, image harmonization, object placement, shadow generation, generative composition). The ultimate goal of this toolbox is solving all the problems related to image composition with simple `import libcom'.

Teaching is one of many professions for which personalized feedback and reflection can help improve dialogue and discussion between the professional and those they serve. However, professional development (PD) is often impersonal as human observation is labor-intensive. Data-driven PD tools in teaching are of growing interest, but open questions about how professionals engage with their data in practice remain. In this paper, we present ClassInSight, a tool that visualizes three levels of teachers' discussion data and structures reflection. Through 22 reflection sessions and interviews with 5 high school science teachers, we found themes related to dissonance, contextualization, and sustainability in how teachers engaged with their data in the tool and in how their professional vision, the use of professional expertise to interpret events, shifted over time. We discuss guidelines for these conversational support tools to support personalized PD in professions beyond teaching where conversation and interaction are important.

The increasing demand for automatic high-level image understanding, particularly in detecting abstract concepts (AC) within images, underscores the necessity for innovative and more interpretable approaches. These approaches need to harmonize traditional deep vision methods with the nuanced, context-dependent knowledge humans employ to interpret images at intricate semantic levels. In this work, we leverage situated perceptual knowledge of cultural images to enhance performance and interpretability in AC image classification. We automatically extract perceptual semantic units from images, which we then model and integrate into the ARTstract Knowledge Graph (AKG). This resource captures situated perceptual semantics gleaned from over 14,000 cultural images labeled with ACs. Additionally, we enhance the AKG with high-level linguistic frames. We compute KG embeddings and experiment with relative representations and hybrid approaches that fuse these embeddings with visual transformer embeddings. Finally, for interpretability, we conduct posthoc qualitative analyses by examining model similarities with training instances. Our results show that our hybrid KGE-ViT methods outperform existing techniques in AC image classification. The posthoc interpretability analyses reveal the visual transformer's proficiency in capturing pixel-level visual attributes, contrasting with our method's efficacy in representing more abstract and semantic scene elements. We demonstrate the synergy and complementarity between KGE embeddings' situated perceptual knowledge and deep visual model's sensory-perceptual understanding for AC image classification. This work suggests a strong potential of neuro-symbolic methods for knowledge integration and robust image representation for use in downstream intricate visual comprehension tasks. All the materials and code are available online.

Backdoor attacks allow an attacker to embed a specific vulnerability in a machine learning algorithm, activated when an attacker-chosen pattern is presented, causing a specific misprediction. The need to identify backdoors in biometric scenarios has led us to propose a novel technique with different trade-offs. In this paper we propose to use model pairs on open-set classification tasks for detecting backdoors. Using a simple linear operation to project embeddings from a probe model's embedding space to a reference model's embedding space, we can compare both embeddings and compute a similarity score. We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures, having been trained independently and on different datasets. Additionally, we show that backdoors can be detected even when both models are backdoored. The source code is made available for reproducibility purposes.

Advancing robotic grasping and manipulation requires the ability to test algorithms and/or train learning models on large numbers of grasps. Towards the goal of more advanced grasping, we present the Grasp Reset Mechanism (GRM), a fully automated apparatus for conducting large-scale grasping trials. The GRM automates the process of resetting a grasping environment, repeatably placing an object in a fixed location and controllable 1-D orientation. It also collects data and swaps between multiple objects enabling robust dataset collection with no human intervention. We also present a standardized state machine interface for control, which allows for integration of most manipulators with minimal effort. In addition to the physical design and corresponding software, we include a dataset of 1,020 grasps. The grasps were created with a Kinova Gen3 robot arm and Robotiq 2F-85 Adaptive Gripper to enable training of learning models and to demonstrate the capabilities of the GRM. The dataset includes ranges of grasps conducted across four objects and a variety of orientations. Manipulator states, object pose, video, and grasp success data are provided for every trial.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司