亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of exhaustively visiting all pairs of linear cellular automata which give rise to orthogonal Latin squares, i.e., linear Orthogonal Cellular Automata (OCA). The problem is equivalent to enumerating all pairs of coprime polynomials over a finite field having the same degree and a nonzero constant term. While previous research showed how to count all such pairs for a given degree and order of the finite field, no practical enumeration algorithms have been proposed so far. Here, we start closing this gap by addressing the case of polynomials defined over the field $\F_2$, which corresponds to binary CA. In particular, we exploit Benjamin and Bennett's bijection between coprime and non-coprime pairs of polynomials, which enables us to organize our study along three subproblems, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. In the course of this investigation, we unveil interesting connections with algebraic language theory and combinatorics, obtaining an enumeration algorithm and an alternative derivation of the counting formula for this problem.

相關內容

We provide a method, based on automata theory, to mechanically prove the correctness of many numeration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs of correctness can be replaced by simply constructing a regular expression (or finite automaton) specifying the rules for valid representations, followed by a short computation. Examples of the systems that can be handled using our technique include Brown's lazy representation (1965), the far-difference representation developed by Alpert (2009), and three representations proposed by Hajnal (2023). We also provide three additional systems and prove their validity.

We analyse the power of graph neural networks (GNNs) in terms of Boolean circuit complexity and descriptive complexity. We prove that the graph queries that can be computed by a polynomial-size bounded-depth family of GNNs are exactly those definable in the guarded fragment GFO+C of first-order logic with counting and with built-in relations. This puts GNNs in the circuit complexity class TC^0. Remarkably, the GNN families may use arbitrary real weights and a wide class of activation functions that includes the standard ReLU, logistic "sigmod", and hyperbolic tangent functions. If the GNNs are allowed to use random initialisation and global readout (both standard features of GNNs widely used in practice), they can compute exactly the same queries as bounded depth Boolean circuits with threshold gates, that is, exactly the queries in TC^0. Moreover, we show that queries computable by a single GNN with piecewise linear activations and rational weights are definable in GFO+C without built-in relations. Therefore, they are contained in uniform TC^0.

There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation. Instead, they intriguingly interact with each other. In this paper, we introduce the notion of {\em topological graph} for 3D symmetric tensor fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our approach by applying it to solid mechanics and material science data sets.

In this article, we introduce the frozen Gaussian sampling (FGS) algorithm to solve the scalar wave equation in the high-frequency regime. The FGS algorithm is a Monte Carlo sampling strategy based on the frozen Gaussian approximation, which greatly reduces the computation workload in the wave propagation and reconstruction. In this work, we propose feasible and detailed procedures to implement the FGS algorithm to approximate scalar wave equations with Gaussian initial conditions and WKB initial conditions respectively. For both initial data cases, we rigorously analyze the error of applying this algorithm to wave equations of dimensionality $d \geq 3$. In Gaussian initial data cases, we prove that the sampling error due to the Monte Carlo method is independent of the typical wave number. We also derive a quantitative bound of the sampling error in WKB initial data cases. Finally, we validate the performance of the FGS and the theoretical estimates about the sampling error through various numerical examples, which include using the FGS to solve wave equations with both Gaussian and WKB initial data of dimensionality $d = 1, 2$, and $3$.

To control how a robot moves, motion planning algorithms must compute paths in high-dimensional state spaces while accounting for physical constraints related to motors and joints, generating smooth and stable motions, avoiding obstacles, and preventing collisions. A motion planning algorithm must therefore balance competing demands, and should ideally incorporate uncertainty to handle noise, model errors, and facilitate deployment in complex environments. To address these issues, we introduce a framework for robot motion planning based on variational Gaussian Processes, which unifies and generalizes various probabilistic-inference-based motion planning algorithms. Our framework provides a principled and flexible way to incorporate equality-based, inequality-based, and soft motion-planning constraints during end-to-end training, is straightforward to implement, and provides both interval-based and Monte-Carlo-based uncertainty estimates. We conduct experiments using different environments and robots, comparing against baseline approaches based on the feasibility of the planned paths, and obstacle avoidance quality. Results show that our proposed approach yields a good balance between success rates and path quality.

We present a new, efficient procedure to establish Markov equivalence between directed graphs that may or may not contain cycles under the \textit{d}-separation criterion. It is based on the Cyclic Equivalence Theorem (CET) in the seminal works on cyclic models by Thomas Richardson in the mid '90s, but now rephrased from an ancestral perspective. The resulting characterization leads to a procedure for establishing Markov equivalence between graphs that no longer requires tests for d-separation, leading to a significantly reduced algorithmic complexity. The conceptually simplified characterization may help to reinvigorate theoretical research towards sound and complete cyclic discovery in the presence of latent confounders. This version includes a correction to rule (iv) in Theorem 1, and the subsequent adjustment in part 2 of Algorithm 2.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司