亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work proposes a dynamic and adversarial resource allocation problem in a graph environment, which is referred to as the dynamic Defender-Attacker Blotto (dDAB) game. A team of defender robots is tasked to ensure numerical advantage at every node in the graph against a team of attacker robots. The engagement is formulated as a discrete-time dynamic game, where the two teams reallocate their robots in sequence and each robot can move at most one hop at each time step. The game terminates with the attacker's victory if any node has more attacker robots than defender robots. Our goal is to identify the necessary and sufficient number of defender robots to guarantee defense. Through a reachability analysis, we first solve the problem for the case where the attacker team stays as a single group. The results are then generalized to the case where the attacker team can freely split and merge into subteams. Crucially, our analysis indicates that there is no incentive for the attacker team to split, which significantly reduces the search space for the attacker's winning strategies and also enables us to design defender counter-strategies using superposition. We also present an efficient numerical algorithm to identify the necessary and sufficient number of defender robots to defend a given graph. Finally, we present illustrative examples to verify the efficacy of the proposed framework.

相關內容

Manifolds discovered by machine learning models provide a compact representation of the underlying data. Geodesics on these manifolds define locally length-minimising curves and provide a notion of distance, which are key for reduced-order modelling, statistical inference, and interpolation. In this work, we first analyse existing methods for computing length-minimising geodesics. We find that these are not suitable for obtaining valid paths, and thus, geodesic distances. We remedy these shortcomings by leveraging numerical tools from differential geometry, which provide the means to obtain Hamiltonian-conserving geodesics. Second, we propose a model-based parameterisation for distance fields and geodesic flows on continuous manifolds. Our approach exploits a manifold-aware extension to the Eikonal equation, eliminating the need for approximations or discretisation. Finally, we develop a curvature-based training mechanism, sampling and scaling points in regions of the manifold exhibiting larger values of the Ricci scalar. This sampling and scaling approach ensures that we capture regions of the manifold subject to higher degrees of geodesic deviation. Our proposed methods provide principled means to compute valid geodesics and geodesic distances on manifolds. This work opens opportunities for latent-space interpolation, optimal control, and distance computation on differentiable manifolds.

As one of the core parts of flexible manufacturing systems, material handling involves storage and transportation of materials between workstations with automated vehicles. The improvement in material handling can impulse the overall efficiency of the manufacturing system. However, the occurrence of dynamic events during the optimisation of task arrangements poses a challenge that requires adaptability and effectiveness. In this paper, we aim at the scheduling of automated guided vehicles for dynamic material handling. Motivated by some real-world scenarios, unknown new tasks and unexpected vehicle breakdowns are regarded as dynamic events in our problem. We formulate the problem as a constrained Markov decision process which takes into account tardiness and available vehicles as cumulative and instantaneous constraints, respectively. An adaptive constrained reinforcement learning algorithm that combines Lagrangian relaxation and invalid action masking, named RCPOM, is proposed to address the problem with two hybrid constraints. Moreover, a gym-like dynamic material handling simulator, named DMH-GYM, is developed and equipped with diverse problem instances, which can be used as benchmarks for dynamic material handling. Experimental results on the problem instances demonstrate the outstanding performance of our proposed approach compared with eight state-of-the-art constrained and non-constrained reinforcement learning algorithms, and widely used dispatching rules for material handling.

Active search, in applications like environment monitoring or disaster response missions, involves autonomous agents detecting targets in a search space using decision making algorithms that adapt to the history of their observations. Active search algorithms must contend with two types of uncertainty: detection uncertainty and location uncertainty. The more common approach in robotics is to focus on location uncertainty and remove detection uncertainty by thresholding the detection probability to zero or one. In contrast, it is common in the sparse signal processing literature to assume the target location is accurate and instead focus on the uncertainty of its detection. In this work, we first propose an inference method to jointly handle both target detection and location uncertainty. We then build a decision making algorithm on this inference method that uses Thompson sampling to enable decentralized multi-agent active search. We perform simulation experiments to show that our algorithms outperform competing baselines that only account for either target detection or location uncertainty. We finally demonstrate the real world transferability of our algorithms using a realistic simulation environment we created on the Unreal Engine 4 platform with an AirSim plugin.

Offloading computation to nearby edge/fog computing nodes, including the ones carried by moving vehicles, e.g., vehicular fog nodes (VFN), has proved to be a promising approach for enabling low-latency and compute-intensive mobility applications, such as cooperative and autonomous driving. This work considers vehicular fog computing scenarios where the clients of computation offloading services try to minimize their own costs while deciding which VFNs to offload their tasks. We focus on decentralized multi-agent decision-making in a repeated unknown game where each agent, e.g., service client, can observe only its own action and realized cost. In other words, each agent is unaware of the game composition or even the existence of opponents. We apply a completely uncoupled learning rule to generalize the decentralized decision-making algorithm presented in \cite{Cho2021} for the multi-agent case. The multi-agent solution proposed in this work can capture the unknown offloading cost variations susceptive to resource congestion under an adversarial framework where each agent may take implicit cost estimation and suitable resource choice adapting to the dynamics associated with volatile supply and demand. According to the evaluation via simulation, this work reveals that such individual perturbations for robustness to uncertainty and adaptation to dynamicity ensure a certain level of optimality in terms of social welfare, e.g., converging the actual sequence of play with unknown and asymmetric attributes and lowering the correspondent cost in social welfare due to the self-interested behaviors of agents.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司