亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research on automated essay scoring has become increasing important because it serves as a method for evaluating students' written-responses at scale. Scalable methods for scoring written responses are needed as students migrate to online learning environments resulting in the need to evaluate large numbers of written-response assessments. The purpose of this study is to describe and evaluate three active learning methods than can be used to minimize the number of essays that must be scored by human raters while still providing the data needed to train a modern automated essay scoring system. The three active learning methods are the uncertainty-based, the topological-based, and the hybrid method. These three methods were used to select essays included as part of the Automated Student Assessment Prize competition that were then classified using a scoring model that was training with the bidirectional encoder representations from transformer language model. All three active learning methods produced strong results, with the topological-based method producing the most efficient classification. Growth rate accuracy was also evaluated. The active learning methods produced different levels of efficiency under different sample size allocations but, overall, all three methods were highly efficient and produced classifications that were similar to one another.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Developing models to automatically score students' written responses to science problems is critical for science education. However, collecting and labeling sufficient student responses for training models is time and cost-consuming. Recent studies suggest that pre-trained language models (PLMs) can be adapted to downstream tasks without fine-tuning with prompts. However, no research has employed such a prompt approach in science education. As student responses are presented with natural language, aligning the scoring procedure as the next sentence prediction task using prompts can skip the costly fine-tuning stage. In this study, we developed a zero-shot approach to automatically score student responses via Matching Exemplars as Next Sentence Prediction (MeNSP). This approach employs no training samples. We first apply MeNSP in scoring three assessment tasks of scientific argumentation and found machine-human scoring agreements, Cohen's Kappa ranges from 0.30 to 0.57, and F1 score ranges from 0.54 to 0.81. To improve the performance, we extend our research to the few-shots setting, either randomly selecting labeled student responses or manually constructing responses to fine-tune the models. We find that one task's performance is improved with more samples, Cohen's Kappa from 0.30 to 0.38, and F1 score from 0.54 to 0.59; for the two others, scoring performance is not improved. We also find that randomly selected few-shots perform better than the human expert-crafted approach. This study suggests that MeNSP can yield referable automatic scoring for student responses while significantly reducing the cost of model training. This method can benefit low-stakes classroom assessment practices in science education. Future research should further explore the applicability of the MeNSP in different types of assessment tasks in science education and improve the model performance.

In recent years, empirical Bayesian (EB) inference has become an attractive approach for estimation in parametric models arising in a variety of real-life problems, especially in complex and high-dimensional scientific applications. However, compared to the relative abundance of available general methods for computing point estimators in the EB framework, the construction of confidence sets and hypothesis tests with good theoretical properties remains difficult and problem specific. Motivated by the universal inference framework of Wasserman et al. (2020), we propose a general and universal method, based on holdout likelihood ratios, and utilizing the hierarchical structure of the specified Bayesian model for constructing confidence sets and hypothesis tests that are finite sample valid. We illustrate our method through a range of numerical studies and real data applications, which demonstrate that the approach is able to generate useful and meaningful inferential statements in the relevant contexts.

The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs' ability to produce high-quality answers. In particular, an effective approach for complex question-and-answer tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful ones to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationship demonstrate the effectiveness of our method. Our code will be available at //github.com/shizhediao/active-prompt.

Pretraining neural networks with massive unlabeled datasets has become popular as it equips the deep models with a better prior to solve downstream tasks. However, this approach generally assumes that the downstream tasks have access to annotated data of sufficient size. In this work, we propose ALOE, a novel system for improving the data- and label-efficiency of non-semantic speech tasks with active learning. ALOE uses pretrained models in conjunction with active learning to label data incrementally and learn classifiers for downstream tasks, thereby mitigating the need to acquire labeled data beforehand. We demonstrate the effectiveness of ALOE on a wide range of tasks, uncertainty-based acquisition functions, and model architectures. Training a linear classifier on top of a frozen encoder with ALOE is shown to achieve performance similar to several baselines that utilize the entire labeled data.

The exploding research interest for neural networks in modeling nonlinear dynamical systems is largely explained by the networks' capacity to model complex input-output relations directly from data. However, they typically need vast training data before they can be put to any good use. The data generation process for dynamical systems can be an expensive endeavor both in terms of time and resources. Active learning addresses this shortcoming by acquiring the most informative data, thereby reducing the need to collect enormous datasets. What makes the current work unique is integrating the deep active learning framework into nonlinear system identification. We formulate a general static deep active learning acquisition problem for nonlinear system identification. This is enabled by exploring system dynamics locally in different regions of the input space to obtain a simulated dataset covering the broader input space. This simulated dataset can be used in a static deep active learning acquisition scheme referred to as global explorations. The global exploration acquires a batch of initial states corresponding to the most informative state-action trajectories according to a batch acquisition function. The local exploration solves an optimal control problem, finding the control trajectory that maximizes some measure of information. After a batch of informative initial states is acquired, a new round of local explorations from the initial states in the batch is conducted to obtain a set of corresponding control trajectories that are to be applied on the system dynamics to get data from the system. Information measures used in the acquisition scheme are derived from the predictive variance of an ensemble of neural networks. The novel method outperforms standard data acquisition methods used for system identification of nonlinear dynamical systems in the case study performed on simulated data.

This paper proposes a paradigm of uncertainty injection for training deep learning model to solve robust optimization problems. The majority of existing studies on deep learning focus on the model learning capability, while assuming the quality and accuracy of the inputs data can be guaranteed. However, in realistic applications of deep learning for solving optimization problems, the accuracy of inputs, which are the problem parameters in this case, plays a large role. This is because, in many situations, it is often costly or sometime impossible to obtain the problem parameters accurately, and correspondingly, it is highly desirable to develop learning algorithms that can account for the uncertainties in the input and produce solutions that are robust against these uncertainties. This paper presents a novel uncertainty injection scheme for training machine learning models that are capable of implicitly accounting for the uncertainties and producing statistically robust solutions. We further identify the wireless communications as an application field where uncertainties are prevalent in problem parameters such as the channel coefficients. We show the effectiveness of the proposed training scheme in two applications: the robust power loading for multiuser multiple-input-multiple-output (MIMO) downlink transmissions; and the robust power control for device-to-device (D2D) networks.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司