亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Personalized diffusion models (PDMs) have become prominent for adapting pretrained text-to-image models to generate images of specific subjects using minimal training data. However, PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets. These vulnerabilities are exploited to create protective perturbations that prevent unauthorized image generation. Existing purification methods attempt to mitigate this issue but often over-purify images, resulting in information loss. In this work, we conduct an in-depth analysis of the fine-tuning process of PDMs through the lens of shortcut learning. We hypothesize and empirically demonstrate that adversarial perturbations induce a latent-space misalignment between images and their text prompts in the CLIP embedding space. This misalignment causes the model to erroneously associate noisy patterns with unique identifiers during fine-tuning, resulting in poor generalization. Based on these insights, we propose a systematic defense framework that includes data purification and contrastive decoupling learning. We first employ off-the-shelf image restoration techniques to realign images with their original semantic meanings in latent space. Then, we introduce contrastive decoupling learning with noise tokens to decouple the learning of personalized concepts from spurious noise patterns. Our study not only uncovers fundamental shortcut learning vulnerabilities in PDMs but also provides a comprehensive evaluation framework for developing stronger protection. Our extensive evaluation demonstrates its superiority over existing purification methods and stronger robustness against adaptive perturbation.

相關內容

Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at \url{//github.com/hutaihang/ToMe}.

Recently, deep learning-based salient object detection (SOD) in optical remote sensing images (ORSIs) have achieved significant breakthroughs. We observe that existing ORSIs-SOD methods consistently center around optimizing pixel features in the spatial domain, progressively distinguishing between backgrounds and objects. However, pixel information represents local attributes, which are often correlated with their surrounding context. Even with strategies expanding the local region, spatial features remain biased towards local characteristics, lacking the ability of global perception. To address this problem, we introduce the Fourier transform that generate global frequency features and achieve an image-size receptive field. To be specific, we propose a novel United Domain Cognition Network (UDCNet) to jointly explore the global-local information in the frequency and spatial domains. Technically, we first design a frequency-spatial domain transformer block that mutually amalgamates the complementary local spatial and global frequency features to strength the capability of initial input features. Furthermore, a dense semantic excavation module is constructed to capture higher-level semantic for guiding the positioning of remote sensing objects. Finally, we devise a dual-branch joint optimization decoder that applies the saliency and edge branches to generate high-quality representations for predicting salient objects. Experimental results demonstrate the superiority of the proposed UDCNet method over 24 state-of-the-art models, through extensive quantitative and qualitative comparisons in three widely-used ORSIs-SOD datasets. The source code is available at: \href{//github.com/CSYSI/UDCNet}{\color{blue} //github.com/CSYSI/UDCNet}.

In recent years, diffusion models have become one of the main methods for generating images. However, detecting images generated by these models remains a challenging task. This paper proposes a novel method for detecting images generated by Latent Diffusion Models (LDM) by identifying artifacts introduced by their autoencoders. By training a detector to distinguish between real images and those reconstructed by the LDM autoencoder, the method enables detection of generated images without directly training on them. The novelty of this research lies in the fact that, unlike similar approaches, this method does not require training on synthesized data, significantly reducing computational costs and enhancing generalization ability. Experimental results show high detection accuracy with minimal false positives, making this approach a promising tool for combating fake images.

Recent work in the construction of 3D scene graphs has enabled mobile robots to build large-scale metric-semantic hierarchical representations of the world. These detailed models contain information that is useful for planning, however an open question is how to derive a planning domain from a 3D scene graph that enables efficient computation of executable plans. In this work, we present a novel approach for defining and solving Task and Motion Planning problems in large-scale environments using hierarchical 3D scene graphs. We describe a method for building sparse problem instances which enables scaling planning to large scenes, and we propose a technique for incrementally adding objects to that domain during planning time that minimizes computation on irrelevant elements of the scene graph. We evaluate our approach in two real scene graphs built from perception, including one constructed from the KITTI dataset. Furthermore, we demonstrate our approach in the real world, building our representation, planning in it, and executing those plans on a real robotic mobile manipulator. A video supplement is available at \url{//youtu.be/v8fkwLjBn58}.

Lifelong few-shot customization for text-to-image diffusion aims to continually generalize existing models for new tasks with minimal data while preserving old knowledge. Current customization diffusion models excel in few-shot tasks but struggle with catastrophic forgetting problems in lifelong generations. In this study, we identify and categorize the catastrophic forgetting problems into two folds: relevant concepts forgetting and previous concepts forgetting. To address these challenges, we first devise a data-free knowledge distillation strategy to tackle relevant concepts forgetting. Unlike existing methods that rely on additional real data or offline replay of original concept data, our approach enables on-the-fly knowledge distillation to retain the previous concepts while learning new ones, without accessing any previous data. Second, we develop an In-Context Generation (ICGen) paradigm that allows the diffusion model to be conditioned upon the input vision context, which facilitates the few-shot generation and mitigates the issue of previous concepts forgetting. Extensive experiments show that the proposed Lifelong Few-Shot Diffusion (LFS-Diffusion) method can produce high-quality and accurate images while maintaining previously learned knowledge.

The efficacy of diffusion models in generating a spectrum of data modalities, including images, text, and videos, has spurred inquiries into their utility in molecular generation, yielding significant advancements in the field. However, the molecular generation process with diffusion models involves multiple autoregressive steps over a finite time horizon, leading to exposure bias issues inherently. To address the exposure bias issue, we propose a training framework named GapDiff. The core idea of GapDiff is to utilize model-predicted conformations as ground truth probabilistically during training, aiming to mitigate the data distributional disparity between training and inference, thereby enhancing the affinity of generated molecules. We conduct experiments using a 3D molecular generation model on the CrossDocked2020 dataset, and the vina energy and diversity demonstrate the potency of our framework with superior affinity. GapDiff is available at \url{//github.com/HUGHNew/gapdiff}.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can both be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at //github.com/mttr2021/MTTR

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司