亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The success of intelligent robotic missions relies on integrating various research tasks, each demanding distinct representations. Designing task-specific representations for each task is costly and impractical. Unified representations suitable for multiple tasks remain unexplored. My outline introduces a series of research outcomes of GP-based probabilistic distance field (GPDF) representation that mathematically models the fundamental property of Euclidean distance field (EDF) along with gradients, surface normals and dense reconstruction. The progress to date and ongoing future works show that GPDF has the potential to offer a unified solution of representation for multiple tasks such as localisation, mapping, motion planning, obstacle avoidance, grasping, human-robot collaboration, and dense visualisation. I believe that GPDF serves as the cornerstone for robots to accomplish more complex and challenging tasks. By leveraging GPDF, robots can navigate through intricate environments, understand spatial relationships, and interact with objects and humans seamlessly.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Transfer optimization enables data-efficient optimization of a target task by leveraging experiential priors from related source tasks. This is especially useful in multiobjective optimization settings where a set of trade-off solutions is sought under tight evaluation budgets. In this paper, we introduce a novel concept of \textit{inverse transfer} in multiobjective optimization. Inverse transfer stands out by employing Bayesian inverse Gaussian process models to map performance vectors in the objective space to population search distributions in task-specific decision space, facilitating knowledge transfer through objective space unification. Building upon this idea, we introduce the first Inverse Transfer Evolutionary Multiobjective Optimizer (invTrEMO). A key highlight of invTrEMO is its ability to harness the common objective functions prevalent in many application areas, even when decision spaces do not precisely align between tasks. This allows invTrEMO to uniquely and effectively utilize information from heterogeneous source tasks as well. Furthermore, invTrEMO yields high-precision inverse models as a significant byproduct, enabling the generation of tailored solutions on-demand based on user preferences. Empirical studies on multi- and many-objective benchmark problems, as well as a practical case study, showcase the faster convergence rate and modelling accuracy of the invTrEMO relative to state-of-the-art evolutionary and Bayesian optimization algorithms. The source code of the invTrEMO is made available at //github.com/LiuJ-2023/invTrEMO.

Deep neural networks conventionally employ end-to-end backpropagation for their training process, which lacks biological credibility and triggers a locking dilemma during network parameter updates, leading to significant GPU memory use. Supervised local learning, which segments the network into multiple local blocks updated by independent auxiliary networks. However, these methods cannot replace end-to-end training due to lower accuracy, as gradients only propagate within their local block, creating a lack of information exchange between blocks. To address this issue and establish information transfer across blocks, we propose a Momentum Auxiliary Network (MAN) that establishes a dynamic interaction mechanism. The MAN leverages an exponential moving average (EMA) of the parameters from adjacent local blocks to enhance information flow. This auxiliary network, updated through EMA, helps bridge the informational gap between blocks. Nevertheless, we observe that directly applying EMA parameters has certain limitations due to feature discrepancies among local blocks. To overcome this, we introduce learnable biases, further boosting performance. We have validated our method on four image classification datasets (CIFAR-10, STL-10, SVHN, ImageNet), attaining superior performance and substantial memory savings. Notably, our method can reduce GPU memory usage by more than 45\% on the ImageNet dataset compared to end-to-end training, while achieving higher performance. The Momentum Auxiliary Network thus offers a new perspective for supervised local learning. Our code is available at: //github.com/JunhaoSu0/MAN.

Linear arrangements of graphs are a well-known type of graph labeling and are found in many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in time $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in time $O(n^4)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, we prove that it constitutes a $3/2$-approximation algorithm for $\texttt{MaxLA}$ for trees. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.

The problem of finite/fixed-time cooperative state estimation is considered for a class of quasilinear systems with nonlinearities satisfying a H\"older condition. A strongly connected nonlinear distributed observer is designed under the assumption of global observability. By proper parameter tuning with linear matrix inequalities, the observer error equation possesses finite/fixed-time stability in the perturbation-free case and input-to-state stability with respect to bounded perturbations. Numerical simulations are performed to validate this design.

In the dynamic field of Software Engineering (SE), where practice is constantly evolving and adapting to new technologies, conducting research is a daunting quest. This poses a challenge for researchers: how to stay relevant and effective in their studies? Empirical Software Engineering (ESE) has emerged as a contending force aiming to critically evaluate and provide knowledge that informs practice in adopting new technologies. Empirical research requires a rigorous process of collecting and analyzing data to obtain evidence-based findings. Challenges to this process are numerous, and many researchers, novice and experienced, found difficulties due to many complexities involved in designing their research. The core of this chapter is to teach foundational skills in research design, essential for educating software engineers and researchers in ESE. It focuses on developing a well-structured research design, which includes defining a clear area of investigation, formulating relevant research questions, and choosing appropriate methodologies. While the primary focus is on research design, this chapter also covers aspects of research scoping and selecting research methods. This approach prepares students to handle the complexities of the ever-changing technological landscape in SE, making it a critical component of their educational curriculum.

Modern cyber-physical systems are becoming increasingly complex to model, thus motivating data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However, most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is feasible to avoid applying the agent's infeasible action proposals to the system. However, these efforts focus on guaranteeing constraint satisfaction rather than the agent's learning efficiency. To improve the learning process, we introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model. We train the agent by formulating the problem as a distribution matching problem and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path planning scenario, and a robotic grasping simulation, we demonstrate the agent's proficiency in generating actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible to focus future work on the objective part of action mapping, paving the way for an RL framework that is both safe and efficient.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司