亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Home-based physical therapies are effective if the prescribed exercises are correctly executed and patients adhere to these routines. This is specially important for older adults who can easily forget the guidelines from therapists. Inertial Measurement Units (IMUs) are commonly used for tracking exercise execution giving information of patients' motion data. In this work, we propose the use of Machine Learning techniques to recognize which exercise is being carried out and to assess if the recognized exercise is properly executed by using data from four IMUs placed on the person limbs. To the best of our knowledge, both tasks have never been addressed together as a unique complex task before. However, their combination is needed for the complete characterization of the performance of physical therapies. We evaluate the performance of six machine learning classifiers in three contexts: recognition and evaluation in a single classifier, recognition of correct exercises, excluding the wrongly performed exercises, and a two-stage approach that first recognizes the exercise and then evaluates it. We apply our proposal to a set of 8 exercises of the upper-and lower-limbs designed for maintaining elderly people health status. To do so, the motion of volunteers were monitored with 4 IMUs. We obtain accuracies of 88.4 \% and the 91.4 \% in the two initial scenarios. In the third one, the recognition provides an accuracy of 96.2 \%, whereas the exercise evaluation varies between 93.6 \% and 100.0 \%. This work proves the feasibility of IMUs for a complete monitoring of physical therapies in which we can get information of which exercise is being performed and its quality, as a basis for designing virtual coaches.

相關內容

Stochastic reservoir characterization, a critical aspect of subsurface exploration for oil and gas reservoirs, relies on stochastic methods to model and understand subsurface properties using seismic data. This paper addresses the computational challenges associated with Bayesian reservoir inversion methods, focusing on two key obstacles: the demanding forward model and the high dimensionality of Gaussian random fields. Leveraging the generalized Bayesian approach, we replace the intricate forward function with a computationally efficient multivariate adaptive regression splines method, resulting in a 34 acceleration in computational efficiency. For handling high-dimensional Gaussian random fields, we employ a fast Fourier transform (FFT) technique. Additionally, we explore the preconditioned Crank-Nicolson method for sampling, providing a more efficient exploration of high-dimensional parameter spaces. The practicality and efficacy of our approach are tested extensively in simulations and its validity is demonstrated in application to the Alvheim field data.

Chemical and biochemical reactions can exhibit surprisingly different behaviours from multiple steady-state solutions to oscillatory solutions and chaotic behaviours. Such behaviour has been of great interest to researchers for many decades. The Briggs-Rauscher, Belousov-Zhabotinskii and Bray-Liebhafsky reactions, for which periodic variations in concentrations can be visualized by changes in colour, are experimental examples of oscillating behaviour in chemical systems. These type of systems are modelled by a system of partial differential equations coupled by a nonlinearity. However, analysing the pattern, one may suspect that the dynamic is only generated by a finite number of spatial Fourier modes. In fluid dynamics, it is shown that for large times, the solution is determined by a finite number of spatial Fourier modes, called determining modes. In the article, we first introduce the concept of determining modes and show that, indeed, it is sufficient to characterise the dynamic by only a finite number of spatial Fourier modes. In particular, we analyse the exact number of the determining modes of $u$ and $v$, where the couple $(u,v)$ solves the following stochastic system \begin{equation*} \partial_t{u}(t) = r_1\Delta u(t) -\alpha_1u(t)- \gamma_1u(t)v^2(t) + f(1 - u(t)) + g(t),\quad \partial_t{v}(t) = r_2\Delta v(t) -\alpha_2v(t) + \gamma_2 u(t)v^2(t) + h(t),\quad u(0) = u_0,\;v(0) = v_0, \end{equation*} where $r_1,r_2,\gamma_1,\gamma_2>0$, $\alpha_1,\alpha_2 \ge 0$ and $g,h$ are time depending mappings specified later.

During the evolution of large models, performance evaluation is necessarily performed to assess their capabilities and ensure safety before practical application. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, aimed at fulfilling the testing needs of large models with enhanced capabilities. The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence. To assess the multidimensional intelligence of large models, the AGI tests consist of a battery of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.

Researchers in many fields endeavor to estimate treatment effects by regressing outcome data (Y) on a treatment (D) and observed confounders (X). Even absent unobserved confounding, the regression coefficient on the treatment reports a weighted average of strata-specific treatment effects (Angrist, 1998). Where heterogeneous treatment effects cannot be ruled out, the resulting coefficient is thus not generally equal to the average treatment effect (ATE), and is unlikely to be the quantity of direct scientific or policy interest. The difference between the coefficient and the ATE has led researchers to propose various interpretational, bounding, and diagnostic aids (Humphreys, 2009; Aronow and Samii, 2016; Sloczynski, 2022; Chattopadhyay and Zubizarreta, 2023). We note that the linear regression of Y on D and X can be misspecified when the treatment effect is heterogeneous in X. The "weights of regression", for which we provide a new (more general) expression, simply characterize how the OLS coefficient will depart from the ATE under the misspecification resulting from unmodeled treatment effect heterogeneity. Consequently, a natural alternative to suffering these weights is to address the misspecification that gives rise to them. For investigators committed to linear approaches, we propose relying on the slightly weaker assumption that the potential outcomes are linear in X. Numerous well-known estimators are unbiased for the ATE under this assumption, namely regression-imputation/g-computation/T-learner, regression with an interaction of the treatment and covariates (Lin, 2013), and balancing weights. Any of these approaches avoid the apparent weighting problem of the misspecified linear regression, at an efficiency cost that will be small when there are few covariates relative to sample size. We demonstrate these lessons using simulations in observational and experimental settings.

It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

The performance of machine learning classification algorithms are evaluated by estimating metrics, often from the confusion matrix, using training data and cross-validation. However, these do not prove that the best possible performance has been achieved. Fundamental limits to error rates can be estimated using information distance measures. To this end, the confusion matrix has been formulated to comply with the Chernoff-Stein Lemma. This links the error rates to the Kullback-Leibler divergences between the probability density functions describing the two classes. This leads to a key result that relates Cohen's Kappa to the Resistor Average Distance which is the parallel resistor combination of the two Kullback-Leibler divergences. The Resistor Average Distance has units of bits and is estimated from the same training data used by the classification algorithm, using kNN estimates of the KullBack-Leibler divergences. The classification algorithm gives the confusion matrix and Kappa. Theory and methods are discussed in detail and then applied to Monte Carlo data and real datasets. Four very different real datasets - Breast Cancer, Coronary Heart Disease, Bankruptcy, and Particle Identification - are analysed, with both continuous and discrete values, and their classification performance compared to the expected theoretical limit. In all cases this analysis shows that the algorithms could not have performed any better due to the underlying probability density functions for the two classes. Important lessons are learnt on how to predict the performance of algorithms for imbalanced data using training datasets that are approximately balanced. Machine learning is very powerful but classification performance ultimately depends on the quality of the data and the relevance of the variables to the problem.

Recently, efficiently deploying deep learning solutions on the edge has received increasing attention. New platforms are emerging to support the increasing demand for flexibility and high performance. In this work, we explore the efficient mapping of convolutional layers on an open-hardware, low-power Coarse-Grain Reconfigurable Array (CGRA), namely OpenEdgeCGRA. We explore both direct implementations of convolution and solutions that transform it into a matrix multiplication through an Im2col transformation, and experiment with various tensor parallelism axes. We show that for this hardware target, direct convolution, coupled with weight parallelism reaches the best latency and energy efficiency, outperforming a CPU implementation by 3.4x and 9.9x in terms of energy and latency, respectively.

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this contribution, we provide a rigorous justification of these approaches for a two-layers neural network model called the committee machine. We also introduce a version of the approximate message passing (AMP) algorithm for the committee machine that allows to perform optimal learning in polynomial time for a large set of parameters. We find that there are regimes in which a low generalization error is information-theoretically achievable while the AMP algorithm fails to deliver it, strongly suggesting that no efficient algorithm exists for those cases, and unveiling a large computational gap.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司