Twitter as one of the most popular social networks, offers a means for communication and online discourse, which unfortunately has been the target of bots and fake accounts, leading to the manipulation and spreading of false information. Towards this end, we gather a challenging, multilingual dataset of social discourse on Twitter, originating from 9M users regarding the recent Russo-Ukrainian war, in order to detect the bot accounts and the conversation involving them. We collect the ground truth for our dataset through the Twitter API suspended accounts collection, containing approximately 343K of bot accounts and 8M of normal users. Additionally, we use a dataset provided by Botometer-V3 with 1,777 Varol, 483 German accounts, and 1,321 US accounts. Besides the publicly available datasets, we also manage to collect 2 independent datasets around popular discussion topics of the 2022 energy crisis and the 2022 conspiracy discussions. Both of the datasets were labeled according to the Twitter suspension mechanism. We build a novel ML model for bot detection using the state-of-the-art XGBoost model. We combine the model with a high volume of labeled tweets according to the Twitter suspension mechanism ground truth. This requires a limited set of profile features allowing labeling of the dataset in different time periods from the collection, as it is independent of the Twitter API. In comparison with Botometer our methodology achieves an average 11% higher ROC-AUC score over two real-case scenario datasets.
In this study, we tackle a modern research challenge within the field of perceptual brain decoding, which revolves around synthesizing images from EEG signals using an adversarial deep learning framework. The specific objective is to recreate images belonging to various object categories by leveraging EEG recordings obtained while subjects view those images. To achieve this, we employ a Transformer-encoder based EEG encoder to produce EEG encodings, which serve as inputs to the generator component of the GAN network. Alongside the adversarial loss, we also incorporate perceptual loss to enhance the quality of the generated images.
As technology and gadgets continue to evolve, the need for bot-friendly and user-friendly internet becomes increasingly critical. This work discusses a methodology for implementation and feasibility of replacing traditional CAPTCHA mechanisms with Nano(XNO) cryptocurrency micropayments as a win-win solution and leverages the decentralized and secure nature of cryptocurrencies to introduce a micropayment-based authentication system. This approach not only enhances security by adding a financial barrier for automated bots but also provides a more seamless and efficient user experience. The benefits of this approach include reducing the burden on users while creating a socio-economic model that incentivizes internet service providers and content creators, even when accessed by bots. Furthermore, the integration of XNO micropayments could potentially contribute to the broader adoption and acceptance of digital currencies in everyday online transactions.
The volumetric representation of human interactions is one of the fundamental domains in the development of immersive media productions and telecommunication applications. Particularly in the context of the rapid advancement of Extended Reality (XR) applications, this volumetric data has proven to be an essential technology for future XR elaboration. In this work, we present a new multimodal database to help advance the development of immersive technologies. Our proposed database provides ethically compliant and diverse volumetric data, in particular 27 participants displaying posed facial expressions and subtle body movements while speaking, plus 11 participants wearing head-mounted displays (HMDs). The recording system consists of a volumetric capture (VoCap) studio, including 31 synchronized modules with 62 RGB cameras and 31 depth cameras. In addition to textured meshes, point clouds, and multi-view RGB-D data, we use one Lytro Illum camera for providing light field (LF) data simultaneously. Finally, we also provide an evaluation of our dataset employment with regard to the tasks of facial expression classification, HMDs removal, and point cloud reconstruction. The dataset can be helpful in the evaluation and performance testing of various XR algorithms, including but not limited to facial expression recognition and reconstruction, facial reenactment, and volumetric video. HEADSET and its all associated raw data and license agreement will be publicly available for research purposes.
Container orchestration technologies are widely employed in cloud computing, facilitating the co-location of online and offline services on the same infrastructure. Online services demand rapid responsiveness and high availability, whereas offline services require extensive computational resources. However, this mixed deployment can lead to resource contention, adversely affecting the performance of online services, yet the metrics used by existing methods cannot accurately reflect the extent of interference. In this paper, we introduce scheduling latency as a novel metric for quantifying interference and compare it with existing metrics. Empirical evidence demonstrates that scheduling latency more accurately reflects the performance degradation of online services. We also utilize various machine learning techniques to predict potential interference on specific hosts for online services, providing reference information for subsequent scheduling decisions. Simultaneously, we propose a method for quantifying node interference based on scheduling latency. To enhance resource utilization, we train a model for online services that predicts CPU and MEM (memory) resource allocation based on workload type and QPS. Finally, we present a scheduling algorithm based on predictive modeling, aiming to reduce interference in online services while balancing node resource utilization. Through experiments and comparisons with three other baseline methods, we demonstrate the effectiveness of our approach. Compared with three baselines, our approach can reduce the average response time, 90th percentile response time, and 99th percentile response time of online services by 29.4%, 31.4%, and 14.5%, respectively.
Language models, especially pre-trained large language models, have showcased remarkable abilities as few-shot in-context learners (ICL), adept at adapting to new tasks with just a few demonstrations in the input context. However, the model's ability to perform ICL is sensitive to the choice of the few-shot demonstrations. Instead of using a fixed set of demonstrations, one recent development is to retrieve demonstrations tailored to each input query. The implementation of demonstration retrieval is relatively straightforward, leveraging existing databases and retrieval systems. This not only improves the efficiency and scalability of the learning process but also has been shown to reduce biases inherent in manual example selection. In light of the encouraging results and growing research in ICL with retrieved demonstrations, we conduct an extensive review of studies in this area. In this survey, we discuss and compare different design choices for retrieval models, retrieval training procedures, and inference algorithms.
While diversity has become a debated issue in design, very little research exists on positive use-cases for diversity beyond scholarly criticism. The current work addresses this gap through the case of a diversity-aware chatbot, exploring what benefits a diversity-aware chatbot could bring to people and how do people interpret diversity when being presented with it. In this paper, we motivate a Q&A chatbot as a technology probe and deploy it in two student communities within a study. During the study, we collected contextual data on people's expectations and perceptions when presented with diversity during the study. Our key findings show that people seek out others with shared niche interests, or their search is driven by exploration and inspiration when presented with diversity. Although interacting with chatbots is limited, participants found the engagement novel and interesting to motivate future research.
As commercial interest in proximity services increased, the development of various wireless localization techniques was promoted. In line with this trend, Ultra-wideband (UWB) is emerging as a promising solution that can realize proximity services thanks to centimeter-level localization accuracy. In addition, since the actual location of the mobile device (MD) on the human body, called pose, affects the localization accuracy, poses are also important to provide accurate proximity services, especially for the UWB tagless gate (UTG). In this paper, a real-time pose detector, termed D3, is proposed to estimate the pose of MD when users pass through UTG. D3 is based on line-of-sight (LOS) and non-LOS (NLOS) classification using UWB channel impulse response and utilizes the inertial measurement unit embedded in the smartphone to estimate the pose. D3 is implemented on Samsung Galaxy Note20 Ultra (i.e., SMN986B) and Qorvo UWB board to show the feasibility and applicability. D3 achieved an LOS/NLOS classification accuracy of 0.984, and ultimately detected four different poses of MD with an accuracy of 0.961 in real-time.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
Recommender systems (RSs) have been the most important technology for increasing the business in Taobao, the largest online consumer-to-consumer (C2C) platform in China. The billion-scale data in Taobao creates three major challenges to Taobao's RS: scalability, sparsity and cold start. In this paper, we present our technical solutions to address these three challenges. The methods are based on the graph embedding framework. We first construct an item graph from users' behavior history. Each item is then represented as a vector using graph embedding. The item embeddings are employed to compute pairwise similarities between all items, which are then used in the recommendation process. To alleviate the sparsity and cold start problems, side information is incorporated into the embedding framework. We propose two aggregation methods to integrate the embeddings of items and the corresponding side information. Experimental results from offline experiments show that methods incorporating side information are superior to those that do not. Further, we describe the platform upon which the embedding methods are deployed and the workflow to process the billion-scale data in Taobao. Using online A/B test, we show that the online Click-Through-Rate (CTRs) are improved comparing to the previous recommendation methods widely used in Taobao, further demonstrating the effectiveness and feasibility of our proposed methods in Taobao's live production environment.