亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The DNS HTTPS resource record is a new DNS record type designed for the delivery of configuration information and parameters required to initiate connections to HTTPS network services. It provides the ability to perform zone apex redirection to a third-party provider, which the existing CNAME record cannot do. In addition, it is a key enabler for TLS Encrypted ClientHello (ECH) by providing the cryptographic keying material needed to encrypt the initial exchange. To understand the adoption and security of this new DNS HTTPS record, we perform a longitudinal study on the server-side deployment of DNS HTTPS for Tranco top 1 million domains over 8 months, as well as the client-side support for DNS HTTPS from major browsers. To the best of knowledge, our work is the first longitudinal study on DNS HTTPS server deployment, and the first known study on client-side support for DNS HTTPS. Despite the rapidly growing trend of DNS HTTPS adoption, our study highlights concerns in the deployment by both servers and clients, such as the complexity in properly maintaining HTTPS records and the concerning hardfail mechanisms in browser when using HTTPS records.

相關內容

 超文本傳輸安全協議是超文本傳輸協議和 SSL/TLS 的組合,用以提供加密通訊及對網絡服務器身份的鑒定。

We propose a pipeline that leverages Stable Diffusion to improve inpainting results in the context of defurnishing -- the removal of furniture items from indoor panorama images. Specifically, we illustrate how increased context, domain-specific model fine-tuning, and improved image blending can produce high-fidelity inpaints that are geometrically plausible without needing to rely on room layout estimation. We demonstrate qualitative and quantitative improvements over other furniture removal techniques.

Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at //github.com/fesvhtr/CUVA.

DOREMUS works on a better description of music by building new tools to link and explore the data of three French institutions. This paper gives an overview of the data model based on FRBRoo, explains the conversion and linking processes using linked data technologies and presents the prototypes created to consume the data according to the web users' needs.

Purpose: Autonomous navigation of devices in endovascular interventions can decrease operation times, improve decision-making during surgery, and reduce operator radiation exposure while increasing access to treatment. This systematic review explores recent literature to assess the impact, challenges, and opportunities artificial intelligence (AI) has for the autonomous endovascular intervention navigation. Methods: PubMed and IEEEXplore databases were queried. Eligibility criteria included studies investigating the use of AI in enabling the autonomous navigation of catheters/guidewires in endovascular interventions. Following PRISMA, articles were assessed using QUADAS-2. PROSPERO: CRD42023392259. Results: Among 462 studies, fourteen met inclusion criteria. Reinforcement learning (9/14, 64%) and learning from demonstration (7/14, 50%) were used as data-driven models for autonomous navigation. Studies predominantly utilised physical phantoms (10/14, 71%) and in silico (4/14, 29%) models. Experiments within or around the blood vessels of the heart were reported by the majority of studies (10/14, 71%), while simple non-anatomical vessel platforms were used in three studies (3/14, 21%), and the porcine liver venous system in one study. We observed that risk of bias and poor generalisability were present across studies. No procedures were performed on patients in any of the studies reviewed. Studies lacked patient selection criteria, reference standards, and reproducibility, resulting in low clinical evidence levels. Conclusions: AI's potential in autonomous endovascular navigation is promising, but in an experimental proof-of-concept stage, with a technology readiness level of 3. We highlight that reference standards with well-identified performance metrics are crucial to allow for comparisons of data-driven algorithms proposed in the years to come.

Generative foundation models like Stable Diffusion comprise a diverse spectrum of knowledge in computer vision with the potential for transfer learning, e.g., via generating data to train student models for downstream tasks. This could circumvent the necessity of collecting labeled real-world data, thereby presenting a form of data-free knowledge distillation. However, the resultant student models show a significant drop in accuracy compared to models trained on real data. We investigate possible causes for this drop and focus on the role of the different layers of the student model. By training these layers using either real or synthetic data, we reveal that the drop mainly stems from the model's final layers. Further, we briefly investigate other factors, such as differences in data-normalization between synthetic and real, the impact of data augmentations, texture vs.\ shape learning, and assuming oracle prompts. While we find that some of those factors can have an impact, they are not sufficient to close the gap towards real data. Building upon our insights that mainly later layers are responsible for the drop, we investigate the data-efficiency of fine-tuning a synthetically trained model with real data applied to only those last layers. Our results suggest an improved trade-off between the amount of real training data used and the model's accuracy. Our findings contribute to the understanding of the gap between synthetic and real data and indicate solutions to mitigate the scarcity of labeled real data.

As the development of large-scale Generative AI models evolve beyond text (1D) generation to include image (2D) and video (3D) generation, processing spatial and temporal information presents unique challenges to quality, performance, and efficiency. We present the first work towards understanding this new system design space for multi-modal text-to-image (TTI) and text-to-video (TTV) generation models. Current model architecture designs are bifurcated into 2 categories: Diffusion- and Transformer-based models. Our systematic performance characterization on a suite of eight representative TTI/TTV models shows that after state-of-the-art optimization techniques such as Flash Attention are applied, Convolution accounts for up to 44% of execution time for Diffusion-based TTI models, while Linear layers consume up to 49% of execution time for Transformer-based models. We additionally observe that Diffusion-based TTI models resemble the Prefill stage of LLM inference, and benefit from 1.1-2.5x greater speedup from Flash Attention than Transformer-based TTI models that resemble the Decode phase. Since optimizations designed for LLMs do not map directly onto TTI/TTV models, we must conduct a thorough characterization of these workloads to gain insights for new optimization opportunities. In doing so, we define sequence length in the context of TTI/TTV models and observe sequence length can vary up to 4x in Diffusion model inference. We additionally observe temporal aspects of TTV workloads pose unique system bottlenecks, with Temporal Attention accounting for over 60% of total Attention time. Overall, our in-depth system performance characterization is a critical first step towards designing efficient and deployable systems for emerging TTI/TTV workloads.

The ability of Augmented Reality to overcome the bias of single stories through multidimensionality is explored in the artifacts of a youth gun violence prevention project and its goal of narrative change.

Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.

Denoising probabilistic diffusion models have shown breakthrough performance to generate more photo-realistic images or human-level illustrations than the prior models such as GANs. This high image-generation capability has stimulated the creation of many downstream applications in various areas. However, we find that this technology is actually a double-edged sword: We identify a new type of attack, called the Natural Denoising Diffusion (NDD) attack based on the finding that state-of-the-art deep neural network (DNN) models still hold their prediction even if we intentionally remove their robust features, which are essential to the human visual system (HVS), through text prompts. The NDD attack shows a significantly high capability to generate low-cost, model-agnostic, and transferable adversarial attacks by exploiting the natural attack capability in diffusion models. To systematically evaluate the risk of the NDD attack, we perform a large-scale empirical study with our newly created dataset, the Natural Denoising Diffusion Attack (NDDA) dataset. We evaluate the natural attack capability by answering 6 research questions. Through a user study, we find that it can achieve an 88% detection rate while being stealthy to 93% of human subjects; we also find that the non-robust features embedded by diffusion models contribute to the natural attack capability. To confirm the model-agnostic and transferable attack capability, we perform the NDD attack against the Tesla Model 3 and find that 73% of the physically printed attacks can be detected as stop signs. Our hope is that the study and dataset can help our community be aware of the risks in diffusion models and facilitate further research toward robust DNN models.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

北京阿比特科技有限公司