Sentiment or mood can express themselves on various levels in music. In automatic analysis, the actual audio data is usually analyzed, but the lyrics can also play a crucial role in the perception of moods. We first evaluate various models for sentiment analysis based on lyrics and audio separately. The corresponding approaches already show satisfactory results, but they also exhibit weaknesses, the causes of which we examine in more detail. Furthermore, different approaches to combining the audio and lyrics results are proposed and evaluated. Considering both modalities generally leads to improved performance. We investigate misclassifications and (also intentional) contradictions between audio and lyrics sentiment more closely, and identify possible causes. Finally, we address fundamental problems in this research area, such as high subjectivity, lack of data, and inconsistency in emotion taxonomies.
The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest. We analyze its random scan version, under log-concavity assumptions on the target density. Our approach builds on the recent work of M. Arnese and D. Lacker, \emph{Convergence of coordinate ascent variational inference for log-concave measures via optimal transport} [arXiv:2404.08792] which studies the deterministic scan version of the algorithm, phrasing it as a block-coordinate descent algorithm in the space of probability distributions endowed with the geometry of optimal transport. We obtain tight rates for the random scan version, which imply that the total number of factor updates required to converge scales linearly with the condition number and the number of blocks of the target distribution. By contrast, available bounds for the deterministic scan case scale quadratically in the same quantities, which is analogue to what happens for optimization of convex functions in Euclidean spaces.
Contrastive language-audio pretraining (CLAP) has recently emerged as a method for making audio analysis more generalisable. Specifically, CLAP-style models are able to `answer' a diverse set of language queries, extending the capabilities of audio models beyond a closed set of labels. However, CLAP relies on a large set of (audio, query) pairs for pretraining. While such sets are available for general audio tasks, like captioning or sound event detection, there are no datasets with matched audio and text queries for computational paralinguistic (CP) tasks. As a result, the community relies on generic CLAP models trained for general audio with limited success. In the present study, we explore training considerations for ParaCLAP, a CLAP-style model suited to CP, including a novel process for creating audio-language queries. We demonstrate its effectiveness on a set of computational paralinguistic tasks, where it is shown to surpass the performance of open-source state-of-the-art models.
Neural audio synthesis methods can achieve high-fidelity and realistic sound generation by utilizing deep generative models. Such models typically rely on external labels which are often discrete as conditioning information to achieve guided sound generation. However, it remains difficult to control the subtle changes in sounds without appropriate and descriptive labels, especially given a limited dataset. This paper proposes an implicit conditioning method for neural audio synthesis using generative adversarial networks that allows for interpretable control of the acoustic features of synthesized sounds. Our technique creates a continuous conditioning space that enables timbre manipulation without relying on explicit labels. We further introduce an evaluation metric to explore controllability and demonstrate that our approach is effective in enabling a degree of controlled variation of different synthesized sound effects for in-domain and cross-domain sounds.
Despite progress in audio classification, a generalization gap remains between speech and other sound domains, such as environmental sounds and music. Models trained for speech tasks often fail to perform well on environmental or musical audio tasks, and vice versa. While self-supervised (SSL) audio representations offer an alternative, there has been limited exploration of scaling both model and dataset sizes for SSL-based general audio classification. We introduce Dasheng, a simple SSL audio encoder, based on the efficient masked autoencoder framework. Trained with 1.2 billion parameters on 272,356 hours of diverse audio, Dasheng obtains significant performance gains on the HEAR benchmark. It outperforms previous works on CREMA-D, LibriCount, Speech Commands, VoxLingua, and competes well in music and environment classification. Dasheng features inherently contain rich speech, music, and environmental information, as shown in nearest-neighbor classification experiments. Code is available //github.com/richermans/dasheng/.
Nonparametric estimators for the mean and the covariance functions of functional data are proposed. The setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The estimators depend on the local regularity of the stochastic process generating the functional data. We consider a simple estimator of this local regularity which exploits the replication and regularization features of functional data. Next, we use the ``smoothing first, then estimate'' approach for the mean and the covariance functions. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon an example of real data set, illustrate the effectiveness of the new approach.
Semi-algebraic priors are ubiquitous in signal processing and machine learning. Prevalent examples include a) linear models where the signal lies in a low-dimensional subspace; b) sparse models where the signal can be represented by only a few coefficients under a suitable basis; and c) a large family of neural network generative models. In this paper, we prove a transversality theorem for semi-algebraic sets in orthogonal or unitary representations of groups: with a suitable dimension bound, a generic translate of any semi-algebraic set is transverse to the orbits of the group action. This, in turn, implies that if a signal lies in a low-dimensional semi-algebraic set, then it can be recovered uniquely from measurements that separate orbits. As an application, we consider the implications of the transversality theorem to the problem of recovering signals that are translated by random group actions from their second moment. As a special case, we discuss cryo-EM: a leading technology to constitute the spatial structure of biological molecules, which serves as our prime motivation. In particular, we derive explicit bounds for recovering a molecular structure from the second moment under a semi-algebraic prior and deduce information-theoretic implications. We also obtain information-theoretic bounds for three additional applications: factoring Gram matrices, multi-reference alignment, and phase retrieval. Finally, we deduce bounds for designing permutation invariant separators in machine learning.
Hearing loss (HL) simulators, which allow normal hearing (NH) listeners to experience HL, have been used in speech intelligibility experiments, but not in sound quality experiments due to perceptible distortion. If they produced less distortion, they might be useful for NH listeners to evaluate the sound quality of, for example, hearing aids. We conducted perceptual sound quality experiments to compare the Cambridge version of HL simulator (CamHLS) and the Wakayama version of the HL simulator (WHIS), which has the two algorithms of filterbank analysis synthesis (FBAS) and direct time-varying filter (DTVF). The experimental results showed that WHIS with DTVF produces less perceptible distortion in speech sounds than CamHLS and WHIS with FBAS, even when the nonlinear process is working. This advantage is mainly due to the use of the DTVF algorithm, which could be applied to various signal synthesis applications with filterbank analysis.
In various technical applications, assessing the impact of non-Gaussian processes on responses of dynamic systems is crucial. While simulating time-domain realizations offers an efficient solution for linear dynamic systems, this method proves time-consuming for finite element (FE) models, which may contain thousands to millions of degrees-of-freedom (DOF). Given the central role of kurtosis in describing non-Gaussianity - owing to its concise, parametric-free and easily interpretable nature - this paper introduces a highly efficient approach for deriving response kurtosis and other related statistical descriptions. This approach makes use of the modal solution of dynamic systems, which allows to reduce DOFs and responses analysis to a minimum number in the modal domain. This computational advantage enables fast assessments of non-Gaussian effects for entire FE models. Our approach is illustrated using a simple FE model that has found regular use in the field of random vibration fatigue.
Permutation pattern-avoidance is a central concept of both enumerative and extremal combinatorics. In this paper we study the effect of permutation pattern-avoidance on the complexity of optimization problems. In the context of the dynamic optimality conjecture (Sleator, Tarjan, STOC 1983), Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak (FOCS 2015) conjectured that the amortized search cost of an optimal binary search tree (BST) is constant whenever the search sequence is pattern-avoiding. The best known bound to date is $2^{\alpha{(n)}(1+o(1))}$ recently obtained by Chalermsook, Pettie, and Yingchareonthawornchai (SODA 2024); here $n$ is the BST size and $\alpha(\cdot)$ the inverse-Ackermann function. In this paper we resolve the conjecture, showing a tight $O(1)$ bound. This indicates a barrier to dynamic optimality: any candidate online BST (e.g., splay trees or greedy trees) must match this optimum, but current analysis techniques only give superconstant bounds. More broadly, we argue that the easiness of pattern-avoiding input is a general phenomenon, not limited to BSTs or even to data structures. To illustrate this, we show that when the input avoids an arbitrary, fixed, a priori unknown pattern, one can efficiently compute a $k$-server solution of $n$ requests from a unit interval, with total cost $n^{O(1/\log k)}$, in contrast to the worst-case $\Theta(n/k)$ bound; and a traveling salesman tour of $n$ points from a unit box, of length $O(\log{n})$, in contrast to the worst-case $\Theta(\sqrt{n})$ bound; similar results hold for the euclidean minimum spanning tree, Steiner tree, and nearest-neighbor graphs. We show both results to be tight. Our techniques build on the Marcus-Tardos proof of the Stanley-Wilf conjecture, and on the recently emerging concept of twin-width.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.