亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated both by theoretical and practical considerations in topological data analysis, we generalize the $p$-Wasserstein distance on barcodes to multiparameter persistence modules. For each $p\in [1,\infty]$, we in fact introduce two such generalizations $d_{\mathcal I}^p$ and $d_{\mathcal M}^p$, such that $d_{\mathcal I}^\infty$ equals the interleaving distance and $d_{\mathcal M}^\infty$ equals the matching distance. We show that on 1- or 2-parameter persistence modules over prime fields, $d_{\mathcal I}^p$ is the universal (i.e., largest) metric satisfying a natural stability property; this extends a stability theorem of Skraba and Turner for the $p$-Wasserstein distance on barcodes in the 1-parameter case, and is also a close analogue of a universality property for the interleaving distance given by the second author. We also show that $d_{\mathcal M}^p\leq d_{\mathcal I}^p$ for all $p\in [1,\infty]$, extending an observation of Landi in the $p=\infty$ case. We observe that on 2-parameter persistence modules, $d_{\mathcal M}^p$ can be efficiently approximated. In a forthcoming companion paper, we apply some of these results to study the stability of ($2$-parameter) multicover persistent homology.

相關內容

One possibility of defining a quantum R\'enyi $\alpha$-divergence of two quantum states is to optimize the classical R\'enyi $\alpha$-divergence of their post-measurement probability distributions over all possible measurements (measured R\'enyi divergence), and maybe regularize these quantities over multiple copies of the two states (regularized measured R\'enyi $\alpha$-divergence). A key observation behind the theorem for the strong converse exponent of asymptotic binary quantum state discrimination is that the regularized measured R\'enyi $\alpha$-divergence coincides with the sandwiched R\'enyi $\alpha$-divergence when $\alpha>1$. Moreover, it also follows from the same theorem that to achieve this, it is sufficient to consider $2$-outcome measurements (tests) for any number of copies (this is somewhat surprising, as achieving the measured R\'enyi $\alpha$-divergence for $n$ copies might require a number of measurement outcomes that diverges in $n$, in general). In view of this, it seems natural to expect the same when $\alpha<1$; however, we show that this is not the case. In fact, we show that even for commuting states (classical case) the regularized quantity attainable using $2$-outcome measurements is in general strictly smaller than the R\'enyi $\alpha$-divergence (which is unique in the classical case). In the general quantum case this shows that the above ``regularized test-measured'' R\'enyi $\alpha$-divergence is not even a quantum extension of the classical R\'enyi divergence when $\alpha<1$, in sharp contrast to the $\alpha>1$ case.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

This article grew out of my Master's thesis at the Faculty of Mathematics and Information Science at Ruprecht-Karls-Universit\"at Heidelberg under the supervision of PD Dr. Andreas Ott. Following the work of G. Carlsson and A. Zomorodian on the theory of multidimensional persistence in 2007 and 2009, the main goal of this article is to give a complete classification and parameterization for the algebraic objects corresponding to the homology of a multifiltered simplicial complex. As in the work of G. Carlsson and A. Zomorodian, this classification and parameterization result is then used to show that it is only possible to obtain a discrete and complete invariant for these algebraic objects in the case of one-dimensional persistence, and that it is impossible to obtain the same in dimensions greater than one.

In this paper, we propose and investigate the individually fair $k$-center with outliers (IF$k$CO). In the IF$k$CO, we are given an $n$-sized vertex set in a metric space, as well as integers $k$ and $q$. At most $k$ vertices can be selected as the centers and at most $q$ vertices can be selected as the outliers. The centers are selected to serve all the not-an-outlier (i.e., served) vertices. The so-called individual fairness constraint restricts that every served vertex must have a selected center not too far way. More precisely, it is supposed that there exists at least one center among its $\lceil (n-q) / k \rceil$ closest neighbors for every served vertex. Because every center serves $(n-q) / k$ vertices on the average. The objective is to select centers and outliers, assign every served vertex to some center, so as to minimize the maximum fairness ratio over all served vertices, where the fairness ratio of a vertex is defined as the ratio between its distance with the assigned center and its distance with a $\lceil (n - q )/k \rceil_{\rm th}$ closest neighbor. As our main contribution, a 4-approximation algorithm is presented, based on which we develop an improved algorithm from a practical perspective.

The focus of disentanglement approaches has been on identifying independent factors of variation in data. However, the causal variables underlying real-world observations are often not statistically independent. In this work, we bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data in a large-scale empirical study (including 4260 models). We show and quantify that systematically induced correlations in the dataset are being learned and reflected in the latent representations, which has implications for downstream applications of disentanglement such as fairness. We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.

Generating novel, yet realistic, images of persons is a challenging task due to the complex interplay between the different image factors, such as the foreground, background and pose information. In this work, we aim at generating such images based on a novel, two-stage reconstruction pipeline that learns a disentangled representation of the aforementioned image factors and generates novel person images at the same time. First, a multi-branched reconstruction network is proposed to disentangle and encode the three factors into embedding features, which are then combined to re-compose the input image itself. Second, three corresponding mapping functions are learned in an adversarial manner in order to map Gaussian noise to the learned embedding feature space, for each factor respectively. Using the proposed framework, we can manipulate the foreground, background and pose of the input image, and also sample new embedding features to generate such targeted manipulations, that provide more control over the generation process. Experiments on Market-1501 and Deepfashion datasets show that our model does not only generate realistic person images with new foregrounds, backgrounds and poses, but also manipulates the generated factors and interpolates the in-between states. Another set of experiments on Market-1501 shows that our model can also be beneficial for the person re-identification task.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司