亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Representation learning lies at the heart of the empirical success of deep learning for dealing with the curse of dimensionality. However, the power of representation learning has not been fully exploited yet in reinforcement learning (RL), due to i), the trade-off between expressiveness and tractability; and ii), the coupling between exploration and representation learning. In this paper, we first reveal the fact that under some noise assumption in the stochastic control model, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free. Based on this observation, we propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise. We provide rigorous theoretical analysis of SPEDE, and demonstrate the practical superior performance over the existing state-of-the-art empirical algorithms on several benchmarks.

相關內容

In high performance systems it is sometimes hard to build very large graphs that are efficient both with respect to memory and compute. This paper proposes a data structure called Markov-chain-priority-queue (MCPrioQ), which is a lock-free sparse markov-chain that enables online and continuous learning with time-complexity of $O(1)$ for updates and $O(CDF^{-1}(t))$ inference. MCPrioQ is especially suitable for recommender-systems for lookups of $n$-items in descending probability order. The concurrent updates are achieved using hash-tables and atomic instructions and the lookups are achieved through a novel priority-queue which allows for approximately correct results even during concurrent updates. The approximatly correct and lock-free property is maintained by a read-copy-update scheme, but where the semantics have been slightly updated to allow for swap of elements rather than the traditional pop-insert scheme.

State construction from sensory observations is an important component of a reinforcement learning agent. One solution for state construction is to use recurrent neural networks. Back-propagation through time (BPTT), and real-time recurrent learning (RTRL) are two popular gradient-based methods for recurrent learning. BPTT requires the complete sequence of observations before computing gradients and is unsuitable for online real-time updates. RTRL can do online updates but scales poorly to large networks. In this paper, we propose two constraints that make RTRL scalable. We show that by either decomposing the network into independent modules, or learning the network incrementally, we can make RTRL scale linearly with the number of parameters. Unlike prior scalable gradient estimation algorithms, such as UORO and Truncated-BPTT, our algorithms do not add noise or bias to the gradient estimate. Instead, they trade-off the functional capacity of the network to achieve scalable learning. We demonstrate the effectiveness of our approach over Truncated-BPTT on a benchmark inspired by animal learning and by doing policy evaluation for pre-trained Rainbow-DQN agents in the Arcade Learning Environment (ALE).

A crucial challenge in reinforcement learning is to reduce the number of interactions with the environment that an agent requires to master a given task. Transfer learning proposes to address this issue by re-using knowledge from previously learned tasks. However, determining which source task qualifies as the most appropriate for knowledge extraction, as well as the choice regarding which algorithm components to transfer, represent severe obstacles to its application in reinforcement learning. The goal of this paper is to address these issues with modular multi-source transfer learning techniques. The proposed techniques automatically learn how to extract useful information from source tasks, regardless of the difference in state-action space and reward function. We support our claims with extensive and challenging cross-domain experiments for visual control.

Recommender systems predict what items a user will interact with next, based on their past interactions. The problem is often approached through supervised learning, but recent advancements have shifted towards policy optimization of rewards (e.g., user engagement). One challenge with the latter is policy mismatch: we are only able to train a new policy given data collected from a previously-deployed policy. The conventional way to address this problem is through importance sampling correction, but this comes with practical limitations. We suggest an alternative approach of local policy improvement without off-policy correction. Our method computes and optimizes a lower bound of expected reward of the target policy, which is easy to estimate from data and does not involve density ratios (such as those appearing in importance sampling correction). This local policy improvement paradigm is ideal for recommender systems, as previous policies are typically of decent quality and policies are updated frequently. We provide empirical evidence and practical recipes for applying our technique in a sequential recommendation setting.

Effective exploration is a challenge in reinforcement learning (RL). Novelty-based exploration methods can suffer in high-dimensional state spaces, such as continuous partially-observable 3D environments. We address this challenge by defining novelty using semantically meaningful state abstractions, which can be found in learned representations shaped by natural language. In particular, we evaluate vision-language representations, pretrained on natural image captioning datasets. We show that these pretrained representations drive meaningful, task-relevant exploration and improve performance on 3D simulated environments. We also characterize why and how language provides useful abstractions for exploration by considering the impacts of using representations from a pretrained model, a language oracle, and several ablations. We demonstrate the benefits of our approach in two very different task domains -- one that stresses the identification and manipulation of everyday objects, and one that requires navigational exploration in an expansive world. Our results suggest that using language-shaped representations could improve exploration for various algorithms and agents in challenging environments.

Conventional supervised learning methods typically assume i.i.d samples and are found to be sensitive to out-of-distribution (OOD) data. We propose Generative Causal Representation Learning (GCRL) which leverages causality to facilitate knowledge transfer under distribution shifts. While we evaluate the effectiveness of our proposed method in human trajectory prediction models, GCRL can be applied to other domains as well. First, we propose a novel causal model that explains the generative factors in motion forecasting datasets using features that are common across all environments and with features that are specific to each environment. Selection variables are used to determine which parts of the model can be directly transferred to a new environment without fine-tuning. Second, we propose an end-to-end variational learning paradigm to learn the causal mechanisms that generate observations from features. GCRL is supported by strong theoretical results that imply identifiability of the causal model under certain assumptions. Experimental results on synthetic and real-world motion forecasting datasets show the robustness and effectiveness of our proposed method for knowledge transfer under zero-shot and low-shot settings by substantially outperforming the prior motion forecasting models on out-of-distribution prediction. Our code is available at //github.com/sshirahmad/GCRL.

Human beings cooperatively navigate rule-constrained environments by adhering to mutually known navigational patterns, which may be represented as directional pathways or road lanes. Inferring these navigational patterns from incompletely observed environments is required for intelligent mobile robots operating in unmapped locations. However, algorithmically defining these navigational patterns is nontrivial. This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only. We explain how geometric data augmentation, predictive world modeling, and an information-theoretic regularizer enables our model to predict an unbiased local directional soft lane probability (DSLP) field in the limit of infinite data. We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field. Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset. We propose our SSL method as a scalable and interpretable continual learning paradigm for navigation by perception. Code released upon publication.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司