Non-verbal communication plays a particularly important role in a wide range of scenarios in Human-Robot Interaction (HRI). Accordingly, this work addresses the problem of human gesture recognition. In particular, we focus on head and eye gestures, and adopt an egocentric (first-person) perspective using eyewear cameras. We argue that this egocentric view offers a number of conceptual and technical benefits over scene- or robot-centric perspectives. A motion-based recognition approach is proposed, which operates at two temporal granularities. Locally, frame-to-frame homographies are estimated with a convolutional neural network (CNN). The output of this CNN is input to a long short-term memory (LSTM) to capture longer-term temporal visual relationships, which are relevant to characterize gestures. Regarding the configuration of the network architecture, one particularly interesting finding is that using the output of an internal layer of the homography CNN increases the recognition rate with respect to using the homography matrix itself. While this work focuses on action recognition, and no robot or user study has been conducted yet, the system has been de signed to meet real-time constraints. The encouraging results suggest that the proposed egocentric perspective is viable, and this proof-of-concept work provides novel and useful contributions to the exciting area of HRI.
Predicting human motion is critical for assistive robots and AR/VR applications, where the interaction with humans needs to be safe and comfortable. Meanwhile, an accurate prediction depends on understanding both the scene context and human intentions. Even though many works study scene-aware human motion prediction, the latter is largely underexplored due to the lack of ego-centric views that disclose human intent and the limited diversity in motion and scenes. To reduce the gap, we propose a large-scale human motion dataset that delivers high-quality body pose sequences, scene scans, as well as ego-centric views with eye gaze that serves as a surrogate for inferring human intent. By employing inertial sensors for motion capture, our data collection is not tied to specific scenes, which further boosts the motion dynamics observed from our subjects. We perform an extensive study of the benefits of leveraging eye gaze for ego-centric human motion prediction with various state-of-the-art architectures. Moreover, to realize the full potential of gaze, we propose a novel network architecture that enables bidirectional communication between the gaze and motion branches. Our network achieves the top performance in human motion prediction on the proposed dataset, thanks to the intent information from the gaze and the denoised gaze feature modulated by the motion. The proposed dataset and our network implementation will be publicly available.
Human action recognition (HAR) in videos is one of the core tasks of video understanding. Based on video sequences, the goal is to recognize actions performed by humans. While HAR has received much attention in the visible spectrum, action recognition in infrared videos is little studied. Accurate recognition of human actions in the infrared domain is a highly challenging task because of the redundant and indistinguishable texture features present in the sequence. Furthermore, in some cases, challenges arise from the irrelevant information induced by the presence of multiple active persons not contributing to the actual action of interest. Therefore, most existing methods consider a standard paradigm that does not take into account these challenges, which is in some part due to the ambiguous definition of the recognition task in some cases. In this paper, we propose a new method that simultaneously learns to recognize efficiently human actions in the infrared spectrum, while automatically identifying the key-actors performing the action without using any prior knowledge or explicit annotations. Our method is composed of three stages. In the first stage, optical flow-based key-actor identification is performed. Then for each key-actor, we estimate key-poses that will guide the frame selection process. A scale-invariant encoding process along with embedded pose filtering are performed in order to enhance the quality of action representations. Experimental results on InfAR dataset show that our proposed model achieves promising recognition performance and learns useful action representations.
This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios.
In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.
Human pose estimation aims at localizing human anatomical keypoints or body parts in the input data (e.g., images, videos, or signals). It forms a crucial component in enabling machines to have an insightful understanding of the behaviors of humans, and has become a salient problem in computer vision and related fields. Deep learning techniques allow learning feature representations directly from the data, significantly pushing the performance boundary of human pose estimation. In this paper, we reap the recent achievements of 2D human pose estimation methods and present a comprehensive survey. Briefly, existing approaches put their efforts in three directions, namely network architecture design, network training refinement, and post processing. Network architecture design looks at the architecture of human pose estimation models, extracting more robust features for keypoint recognition and localization. Network training refinement tap into the training of neural networks and aims to improve the representational ability of models. Post processing further incorporates model-agnostic polishing strategies to improve the performance of keypoint detection. More than 200 research contributions are involved in this survey, covering methodological frameworks, common benchmark datasets, evaluation metrics, and performance comparisons. We seek to provide researchers with a more comprehensive and systematic review on human pose estimation, allowing them to acquire a grand panorama and better identify future directions.
Deep learning depends on large amounts of labeled training data. Manual labeling is expensive and represents a bottleneck, especially for tasks such as segmentation, where labels must be assigned down to the level of individual points. That challenge is even more daunting for 3D data: 3D point clouds contain millions of points per scene, and their accurate annotation is markedly more time-consuming. The situation is further aggravated by the added complexity of user interfaces for 3D point clouds, which slows down annotation even more. For the case of 2D image segmentation, interactive techniques have become common, where user feedback in the form of a few clicks guides a segmentation algorithm -- nowadays usually a neural network -- to achieve an accurate labeling with minimal effort. Surprisingly, interactive segmentation of 3D scenes has not been explored much. Previous work has attempted to obtain accurate 3D segmentation masks using human feedback from the 2D domain, which is only possible if correctly aligned images are available together with the 3D point cloud, and it involves switching between the 2D and 3D domains. Here, we present an interactive 3D object segmentation method in which the user interacts directly with the 3D point cloud. Importantly, our model does not require training data from the target domain: when trained on ScanNet, it performs well on several other datasets with different data characteristics as well as different object classes. Moreover, our method is orthogonal to supervised (instance) segmentation methods and can be combined with them to refine automatic segmentations with minimal human effort.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.