亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel contextual bandit algorithm for personalized pricing under utility fairness constraints in scenarios with uncertain demand, achieving an optimal regret upper bound. Our approach, which incorporates dynamic pricing and demand learning, addresses the critical challenge of fairness in pricing strategies. We first delve into the static full-information setting to formulate an optimal pricing policy as a constrained optimization problem. Here, we propose an approximation algorithm for efficiently and approximately computing the ideal policy. We also use mathematical analysis and computational studies to characterize the structures of optimal contextual pricing policies subject to fairness constraints, deriving simplified policies which lays the foundations of more in-depth research and extensions. Further, we extend our study to dynamic pricing problems with demand learning, establishing a non-standard regret lower bound that highlights the complexity added by fairness constraints. Our research offers a comprehensive analysis of the cost of fairness and its impact on the balance between utility and revenue maximization. This work represents a step towards integrating ethical considerations into algorithmic efficiency in data-driven dynamic pricing.

相關內容

This paper considers the optimal sensor allocation for estimating the emission rates of multiple sources in a two-dimensional spatial domain. Locations of potential emission sources are known (e.g., factory stacks), and the number of sources is much greater than the number of sensors that can be deployed, giving rise to the optimal sensor allocation problem. In particular, we consider linear dispersion forward models, and the optimal sensor allocation is formulated as a bilevel optimization problem. The outer problem determines the optimal sensor locations by minimizing the overall Mean Squared Error of the estimated emission rates over various wind conditions, while the inner problem solves an inverse problem that estimates the emission rates. Two algorithms, including the repeated Sample Average Approximation and the Stochastic Gradient Descent based bilevel approximation, are investigated in solving the sensor allocation problem. Convergence analysis is performed to obtain the performance guarantee, and numerical examples are presented to illustrate the proposed approach.

This paper combines modern numerical computation with theoretical results to improve our understanding of the growth factor problem for Gaussian elimination. On the computational side we obtain lower bounds for the maximum growth for complete pivoting for $n=1:75$ and $n=100$ using the Julia JuMP optimization package. At $n=100$ we obtain a growth factor bigger than $3n$. The numerical evidence suggests that the maximum growth factor is bigger than $n$ if and only if $n \ge 11$. We also present a number of theoretical results. We show that the maximum growth factor over matrices with entries restricted to a subset of the reals is nearly equal to the maximum growth factor over all real matrices. We also show that the growth factors under floating point arithmetic and exact arithmetic are nearly identical. Finally, through numerical search, and stability and extrapolation results, we provide improved lower bounds for the maximum growth factor. Specifically, we find that the largest growth factor is bigger than $1.0045n$ for $n>10$, and the lim sup of the ratio with $n$ is greater than or equal to $3.317$. In contrast to the old conjecture that growth might never be bigger than $n$, it seems likely that the maximum growth divided by $n$ goes to infinity as $n \rightarrow \infty$.

Causal and counterfactual reasoning are emerging directions in data science that allow us to reason about hypothetical scenarios. This is particularly useful in domains where experimental data are usually not available. In the context of environmental and ecological sciences, causality enables us, for example, to predict how an ecosystem would respond to hypothetical interventions. A structural causal model is a class of probabilistic graphical models for causality, which, due to its intuitive nature, can be easily understood by experts in multiple fields. However, certain queries, called unidentifiable, cannot be calculated in an exact and precise manner. This paper proposes applying a novel and recent technique for bounding unidentifiable queries within the domain of socioecological systems. Our findings indicate that traditional statistical analysis, including probabilistic graphical models, can identify the influence between variables. However, such methods do not offer insights into the nature of the relationship, specifically whether it involves necessity or sufficiency. This is where counterfactual reasoning becomes valuable.

This paper introduces a novel set of benchmark problems aimed at advancing research in both single and multi-objective optimization, with a specific focus on the design of human-powered aircraft. These benchmark problems are unique in that they incorporate real-world design considerations such as fluid dynamics and material mechanics, providing a more realistic simulation of engineering design optimization. We propose three difficulty levels and a wing segmentation parameter in these problems, allowing for scalable complexity to suit various research needs. The problems are designed to be computationally reasonable, ensuring short evaluation times, while still capturing the moderate multimodality of engineering design problems. Our extensive experiments using popular evolutionary algorithms for multi-objective problems demonstrate that the proposed benchmarks effectively replicate the diverse Pareto front shapes observed in real-world problems, including convex, linear, concave, and inverted triangular forms. The benchmark problems' source codes are publicly available for wider application in the optimization research community.

We propose an adjusted Wasserstein distributionally robust estimator -- based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. The classic WDRO estimator is asymptotically biased, while our adjusted WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean squared error. Meanwhile, the proposed adjusted WDRO has an out-of-sample performance guarantee. Further, under certain conditions, our proposed adjustment technique provides a general principle to de-bias asymptotically biased estimators. Specifically, we will investigate how the adjusted WDRO estimator is developed in the generalized linear model, including logistic regression, linear regression, and Poisson regression. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.

This paper studies linear time series regressions with many regressors. Weak exogeneity is the most used identifying assumption in time series. Weak exogeneity requires the structural error to have zero conditional expectation given the present and past regressor values, allowing errors to correlate with future regressor realizations. We show that weak exogeneity in time series regressions with many controls may produce substantial biases and even render the least squares (OLS) estimator inconsistent. The bias arises in settings with many regressors because the normalized OLS design matrix remains asymptotically random and correlates with the regression error when only weak (but not strict) exogeneity holds. This bias's magnitude increases with the number of regressors and their average autocorrelation. To address this issue, we propose an innovative approach to bias correction that yields a new estimator with improved properties relative to OLS. We establish consistency and conditional asymptotic Gaussianity of this new estimator and provide a method for inference.

This paper considers the problem of community detection on multiple potentially correlated graphs from an information-theoretical perspective. We first put forth a random graph model, called the multi-view stochastic block model (MVSBM), designed to generate correlated graphs on the same set of nodes (with cardinality $n$). The $n$ nodes are partitioned into two disjoint communities of equal size. The presence or absence of edges in the graphs for each pair of nodes depends on whether the two nodes belong to the same community or not. The objective for the learner is to recover the hidden communities with observed graphs. Our technical contributions are two-fold: (i) We establish an information-theoretic upper bound (Theorem~1) showing that exact recovery of community is achievable when the model parameters of MVSBM exceed a certain threshold. (ii) Conversely, we derive an information-theoretic lower bound (Theorem~2) showing that when the model parameters of MVSBM fall below the aforementioned threshold, then for any estimator, the expected number of misclassified nodes will always be greater than one. Our results for the MVSBM recover several prior results for community detection in the standard SBM as well as in multiple independent SBMs as special cases.

Generalized linear regressions, such as logistic regressions or Poisson regressions, are long-studied regression analysis approaches, and their applications are widely employed in various classification problems. Our study considers a stochastic generalized linear regression model as a stochastic problem with chance constraints and tackles it using nonconvex programming techniques. Clustering techniques and quantile estimation are also used to estimate random data's mean and variance-covariance matrix. Metrics for measuring the performance of logistic regression are used to assess the model's efficacy, including the F1 score, precision score, and recall score. The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model on the same dataset with the above assessment criteria.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司