亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present JADE, a targeted linguistic fuzzing platform which strengthens the linguistic complexity of seed questions to simultaneously and consistently break a wide range of widely-used LLMs categorized in three groups: eight open-sourced Chinese, six commercial Chinese and four commercial English LLMs. JADE generates three safety benchmarks for the three groups of LLMs, which contain unsafe questions that are highly threatening: the questions simultaneously trigger harmful generation of multiple LLMs, with an average unsafe generation ratio of $70\%$ (please see the table below), while are still natural questions, fluent and preserving the core unsafe semantics. We release the benchmark demos generated for commercial English LLMs and open-sourced English LLMs in the following link: //github.com/whitzard-ai/jade-db. For readers who are interested in evaluating on more questions generated by JADE, please contact us. JADE is based on Noam Chomsky's seminal theory of transformational-generative grammar. Given a seed question with unsafe intention, JADE invokes a sequence of generative and transformational rules to increment the complexity of the syntactic structure of the original question, until the safety guardrail is broken. Our key insight is: Due to the complexity of human language, most of the current best LLMs can hardly recognize the invariant evil from the infinite number of different syntactic structures which form an unbound example space that can never be fully covered. Technically, the generative/transformative rules are constructed by native speakers of the languages, and, once developed, can be used to automatically grow and transform the parse tree of a given question, until the guardrail is broken. For more evaluation results and demo, please check our website: //whitzard-ai.github.io/jade.html.

相關內容

一個模板引擎. 在Node.js中比較常見.

In this study, a novel deep learning algorithm for object detection, named MelNet, was introduced. MelNet underwent training utilizing the KITTI dataset for object detection. Following 300 training epochs, MelNet attained an mAP (mean average precision) score of 0.732. Additionally, three alternative models -YOLOv5, EfficientDet, and Faster-RCNN-MobileNetv3- were trained on the KITTI dataset and juxtaposed with MelNet for object detection. The outcomes underscore the efficacy of employing transfer learning in certain instances. Notably, preexisting models trained on prominent datasets (e.g., ImageNet, COCO, and Pascal VOC) yield superior results. Another finding underscores the viability of creating a new model tailored to a specific scenario and training it on a specific dataset. This investigation demonstrates that training MelNet exclusively on the KITTI dataset also surpasses EfficientDet after 150 epochs. Consequently, post-training, MelNet's performance closely aligns with that of other pre-trained models.

There exist challenges in learning and understanding religions as the presence of complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect to be used in enlightenment on religion as a question answering chatbot. However, LLMs also have a tendency to generate false information, known as hallucination. The responses of the chatbots can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It needs to avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called as "MufassirQAS". We created a vector database with several open-access books that include Turkish context. These are Turkish translations, and interpretations on Islam. We worked on creating system prompts with care, ensuring they provide instructions that prevent harmful, offensive, or disrespectful responses. We also tested the MufassirQAS and ChatGPT with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.

This paper presents Flash, an optimized private inference (PI) hybrid protocol utilizing both homomorphic encryption (HE) and secure two-party computation (2PC), which can reduce the end-to-end PI latency for deep CNN models less than 1 minute with CPU. To this end, first, Flash proposes a low-latency convolution algorithm built upon a fast slot rotation operation and a novel data encoding scheme, which results in 4-94x performance gain over the state-of-the-art. Second, to minimize the communication cost introduced by the standard nonlinear activation function ReLU, Flash replaces the entire ReLUs with the polynomial $x^2+x$ and trains deep CNN models with the new activation function. The trained models improve the inference accuracy for CIFAR-10/100 and TinyImageNet by 16% on average (up to 40% for ResNet-32) compared to prior art. Last, Flash proposes an efficient 2PC-based $x^2+x$ evaluation protocol that does not require any offline communication and that reduces the total communication cost to process the activation layer by 84-196x over the state-of-the-art. As a result, the end-to-end PI latency of Flash implemented on CPU is 0.02 minute for CIFAR-100 and 0.57 minute for TinyImageNet classification, while the total data communication is 0.07GB for CIFAR-100 and 0.22GB for TinyImageNet. Flash improves the state-of-the-art PI by 16-45x in latency and 84-196x in communication cost. Moreover, even for ImageNet, Flash can deliver the latency less than 1 minute on CPU with the total communication less than 1GB.

Answering complex logical queries on incomplete knowledge graphs (KGs) is a fundamental and challenging task in multi-hop reasoning. Recent work defines this task as an end-to-end optimization problem, which significantly reduces the training cost and enhances the generalization of the model by a pretrained link predictors for query answering. However, most existing proposals ignore the critical semantic knowledge inherently available in KGs, such as type information, which could help answer complex logical queries. To this end, we propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs to discover the latent relationships between entities and relations by leveraging type information in KGs. Meanwhile, in order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced, which is trained by back-propagating during the complex query answering process to achieve adaptive adjustment of neural link predictors. Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering with good generalization and robustness.

This paper presents a plugin that adds a representation of homogeneous and heterogeneous, optically thick, translucent materials on the Blender 3D modeling tool. The working principle of this plugin is based on a combination of Genetic Algorithm (GA) and Singular Value Decomposition (SVD)-based subsurface scattering method (GenSSS). The proposed plugin has been implemented using Mitsuba renderer, which is an open source rendering software. The proposed plugin has been validated on measured subsurface scattering data. It's shown that the proposed plugin visualizes homogeneous and heterogeneous subsurface scattering effects, accurately, compactly and computationally efficiently.

This paper serves as a foundational step towards the development of a linguistically motivated and technically relevant evaluation suite for Greek NLP. We initiate this endeavor by introducing four expert-verified evaluation tasks, specifically targeted at natural language inference, word sense disambiguation (through example comparison or sense selection) and metaphor detection. More than language-adapted replicas of existing tasks, we contribute two innovations which will resonate with the broader resource and evaluation community. Firstly, our inference dataset is the first of its kind, marking not just \textit{one}, but rather \textit{all} possible inference labels, accounting for possible shifts due to e.g. ambiguity or polysemy. Secondly, we demonstrate a cost-efficient method to obtain datasets for under-resourced languages. Using ChatGPT as a language-neutral parser, we transform the Dictionary of Standard Modern Greek into a structured format, from which we derive the other three tasks through simple projections. Alongside each task, we conduct experiments using currently available state of the art machinery. Our experimental baselines affirm the challenging nature of our tasks and highlight the need for expedited progress in order for the Greek NLP ecosystem to keep pace with contemporary mainstream research.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司