亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that there exist infinitely many coprime numbers $a$, $b$, $c$ with $a+b=c$ and $c>\operatorname{rad}(abc)\exp(6.563\sqrt{\log c}/\log\log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. This builds on work of van Frankenhuysen (1999) whom proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt{2\delta/e}$ where $\delta$ is a constant such that all full-rank unimodular lattices of sufficiently large dimension $n$ contain a nonzero vector with $\ell_1$ norm at most $n/\delta$.

相關內容

Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering $n$ noisy training samples, along with their noise-free counterparts, on a $d$-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of $\displaystyle n^{-\frac{2}{d+2}}\log^4 n$, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.

We contribute to a better understanding of the class of functions that can be represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning any function. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). As a by-product of our investigations, we settle an old conjecture about piecewise linear functions by Wang and Sun (2005) in the affirmative. We also present upper bounds on the sizes of neural networks required to represent functions with logarithmic depth.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

This paper is concerned with low-rank matrix optimization, which has found a wide range of applications in machine learning. This problem in the special case of matrix sensing has been studied extensively through the notion of Restricted Isometry Property (RIP), leading to a wealth of results on the geometric landscape of the problem and the convergence rate of common algorithms. However, the existing results can handle the problem in the case with a general objective function subject to noisy data only when the RIP constant is close to 0. In this paper, we develop a new mathematical framework to solve the above-mentioned problem with a far less restrictive RIP constant. We prove that as long as the RIP constant of the noiseless objective is less than $1/3$, any spurious local solution of the noisy optimization problem must be close to the ground truth solution. By working through the strict saddle property, we also show that an approximate solution can be found in polynomial time. We characterize the geometry of the spurious local minima of the problem in a local region around the ground truth in the case when the RIP constant is greater than $1/3$. Compared to the existing results in the literature, this paper offers the strongest RIP bound and provides a complete theoretical analysis on the global and local optimization landscapes of general low-rank optimization problems under random corruptions from any finite-variance family.

In this paper we study multi-robot path planning for persistent monitoring tasks. We consider the case where robots have a limited battery capacity with a discharge time $D$. We represent the areas to be monitored as the vertices of a weighted graph. For each vertex, there is a constraint on the maximum allowable time between robot visits, called the latency. The objective is to find the minimum number of robots that can satisfy these latency constraints while also ensuring that the robots periodically charge at a recharging depot. The decision version of this problem is known to be PSPACE-complete. We present a $O(\frac{\log D}{\log \log D}\log \rho)$ approximation algorithm for the problem where $\rho$ is the ratio of the maximum and the minimum latency constraints. We also present an orienteering based heuristic to solve the problem and show empirically that it typically provides higher quality solutions than the approximation algorithm. We extend our results to provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. We evaluate our algorithms on large problem instances in a patrolling scenario and in a wildfire monitoring application. We also compare the algorithms with an existing solver on benchmark instances.

Marginalising over families of Gaussian Process kernels produces flexible model classes with well-calibrated uncertainty estimates. Existing approaches require likelihood evaluations of many kernels, rendering them prohibitively expensive for larger datasets. We propose a Bayesian Quadrature scheme to make this marginalisation more efficient and thereby more practical. Through use of the maximum mean discrepancies between distributions, we define a kernel over kernels that captures invariances between Spectral Mixture (SM) Kernels. Kernel samples are selected by generalising an information-theoretic acquisition function for warped Bayesian Quadrature. We show that our framework achieves more accurate predictions with better calibrated uncertainty than state-of-the-art baselines, especially when given limited (wall-clock) time budgets.

In this paper we give an Immerman's Theorem for real-valued computation. We define circuits operating over real numbers and show that families of such circuits of polynomial size and constant depth decide exactly those sets of vectors of reals that can be defined in first-order logic on R-structures in the sense of Cucker and Meer. Our characterization holds both non-uniformily as well as for many natural uniformity conditions.

In literature, the cost of a partitioned fluid-structure interaction scheme is typically assessed by the number of coupling iterations required per time step, while ignoring the internal iterations within the nonlinear subproblems. In this work, we demonstrate that these internal iterations have a significant influence on the computational cost of the coupled simulation. Particular attention is paid to how limiting the number of iterations within each solver call can shorten the overall run time, as it avoids polishing the subproblem solution using unconverged coupling data. Based on systematic parameter studies, we investigate the optimal number of subproblem iterations per coupling step. Lastly, this work proposes a new convergence criterion for coupled systems that is based on the residuals of the subproblems and therefore does not require any additional convergence tolerance for the coupling loop.

Over the course of the last 50 years, many questions in the field of computability were left surprisingly unanswered. One example is the question of $P$ vs $NP\cap co-NP$. It could be phrased in loose terms as "If a person has the ability to verify a proof and a disproof to a problem, does this person know a solution to that problem?". When talking about people, one can of course see that the question depends on the knowledge the specific person has on this problem. Our main goal will be to extend this observation to formal models of set theory $ZFC$: given a model $M$ and a specific problem $L$ in $NP\cap co-NP$, we can show that the problem $L$ is in $P$ if we have "knowledge" of $L$. In this paper, we'll define the concept of knowledge and elaborate why it agrees with the intuitive concept of knowledge. Next we will construct a model in which we have knowledge on many functions. From the existence of that model, we will deduce that in any model with a worldly cardinal we have knowledge on a broad class of functions. As a result, we show that if we assume a worldly cardinal exists, then the statement "a given definable language which is provably in $NP\cap co-NP$ is also in $P$" is provable. Assuming a worldly cardinal, we show by a simple use of these theorems that one can factor numbers in poly-logarithmic time. This article won't solve the $P$ vs $NP\cap co-NP$ question, but its main result brings us one step closer to deciding that question.

The determinant lower bound of Lovasz, Spencer, and Vesztergombi [European Journal of Combinatorics, 1986] is a powerful general way to prove lower bounds on the hereditary discrepancy of a set system. In their paper, Lovasz, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from above by a function of the hereditary discrepancy. This was answered in the negative by Hoffman, and the largest known multiplicative gap between the two quantities for a set system of $m$ substes of a universe of size $n$ is on the order of $\max\{\log n, \sqrt{\log m}\}$. On the other hand, building on work of Matou\v{s}ek [Proceedings of the AMS, 2013], recently Jiang and Reis [SOSA, 2022] showed that this gap is always bounded up to constants by $\sqrt{\log(m)\log(n)}$. This is tight when $m$ is polynomial in $n$, but leaves open what happens for large $m$. We show that the bound of Jiang and Reis is tight for nearly the entire range of $m$. Our proof relies on a technique of amplifying discrepancy via taking Kronecker products, and on discrepancy lower bounds for a set system derived from the discrete Haar basis.

北京阿比特科技有限公司