亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We describe a model for polarization in multi-agent systems based on Esteban and Ray's standard measure of polarization from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also prove that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. Furthermore, we show how our model relates to the classic DeGroot model for social learning. We illustrate our model with several simulations of a running example about polarization over vaccines and of other case studies. The theoretical results and simulations will provide insight into the phenomenon of polarization.

相關內容

In the future, artificial learning agents are likely to become increasingly widespread in our society. They will interact with both other learning agents and humans in a variety of complex settings including social dilemmas. We argue that there is a need for research on the intersection between game theory and artificial intelligence, with the goal of achieving cooperative artificial intelligence that can navigate social dilemmas well. We consider the problem of how an external agent can promote cooperation between artificial learners by distributing additional rewards and punishments based on observing the actions of the learners. We propose a rule for automatically learning how to create the right incentives by considering the anticipated parameter updates of each agent. Using this learning rule leads to cooperation with high social welfare in matrix games in which the agents would otherwise learn to defect with high probability. We show that the resulting cooperative outcome is stable in certain games even if the planning agent is turned off after a given number of episodes, while other games require ongoing intervention to maintain mutual cooperation. Finally, we reflect on what the goals of multi-agent reinforcement learning should be in the first place, and discuss the necessary building blocks towards the goal of building cooperative AI.

Multi-Agent Systems (MAS) are notoriously complex and hard to verify. In fact, it is not trivial to model a MAS, and even when a model is built, it is not always possible to verify, in a formal way, that it is actually behaving as we expect. Usually, it is relevant to know whether an agent is capable of fulfilling its own goals. One possible way to check this is through Model Checking. Specifically, by verifying Alternating-time Temporal Logic (ATL) properties, where the notion of strategies for achieving goals can be described. Unfortunately, the resulting model checking problem is not decidable in general. In this paper, we present a verification procedure based on combining Model Checking and Runtime Verification, where sub-models of the MAS model belonging to decidable fragments are verified by a model checker, and runtime monitors are used to verify the rest. Furthermore, we implement our technique and show experimental results.

As one of the typical settings of Federated Learning (FL), cross-silo FL allows organizations to jointly train an optimal Machine Learning (ML) model. In this case, some organizations may try to obtain the global model without contributing their local training, lowering the social welfare. In this paper, we model the interactions among organizations in cross-silo FL as a public goods game for the first time and theoretically prove that there exists a social dilemma where the maximum social welfare is not achieved in Nash equilibrium. To overcome this social dilemma, we employ the Multi-player Multi-action Zero-Determinant (MMZD) strategy to maximize the social welfare. With the help of the MMZD, an individual organization can unilaterally control the social welfare without extra cost. Experimental results validate that the MMZD strategy is effective in maximizing the social welfare.

This paper is the first from a series of papers that provide a characterization of maximum packings of $T$-cuts in bipartite graphs. Given a connected graph, a set $T$ of an even number of vertices, and a minimum $T$-join, an edge weighting can be defined, from which distances between vertices can be defined. Furthermore, given a specified vertex called root, vertices can be classified according to their distances from the root, and this classification of vertices can be used to define a family of subgraphs called {\em distance components}. Seb\"o provided a theorem that revealed a relationship between distance components, minimum $T$-joins, and $T$-cuts. In this paper, we further investigate the structure of distance components in bipartite graphs. Particularly, we focus on {\em capital} distance components, that is, those that include the root. We reveal the structure of capital distance components in terms of the $T$-join analogue of the general Kotzig-Lov\'asz canonical decomposition.

Sequential Monte Carlo methods are typically not straightforward to implement on parallel architectures. This is because standard resampling schemes involve communication between all particles. The $\alpha$-sequential Monte Carlo method was proposed recently as a potential solution to this which limits communication between particles. This limited communication is controlled through a sequence of stochastic matrices known as $\alpha$-matrices. We study the influence of the communication structure on the convergence and stability properties of the resulting algorithms. In particular, we quantitatively show that the mixing properties of the $\alpha$-matrices play an important role in the stability properties of the algorithm. Moreover, we prove that one can ensure good mixing properties by using randomized communication structures where each particle only communicates with a few neighboring particles. The resulting algorithms converge at the usual Monte Carlo rate. This leads to efficient versions of distributed sequential Monte Carlo.

The recent work of Papyan, Han, & Donoho (2020) presented an intriguing "Neural Collapse" phenomenon, showing a structural property of interpolating classifiers in the late stage of training. This opened a rich area of exploration studying this phenomenon. Our motivation is to study the upper limits of this research program: How far will understanding Neural Collapse take us in understanding deep learning? First, we investigate its role in generalization. We refine the Neural Collapse conjecture into two separate conjectures: collapse on the train set (an optimization property) and collapse on the test distribution (a generalization property). We find that while Neural Collapse often occurs on the train set, it does not occur on the test set. We thus conclude that Neural Collapse is primarily an optimization phenomenon, with as-yet-unclear connections to generalization. Second, we investigate the role of Neural Collapse in feature learning. We show simple, realistic experiments where training longer leads to worse last-layer features, as measured by transfer-performance on a downstream task. This suggests that neural collapse is not always desirable for representation learning, as previously claimed. Finally, we give preliminary evidence of a "cascading collapse" phenomenon, wherein some form of Neural Collapse occurs not only for the last layer, but in earlier layers as well. We hope our work encourages the community to continue the rich line of Neural Collapse research, while also considering its inherent limitations.

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

Recent years have witnessed remarkable progress towards computational fake news detection. To mitigate its negative impact, we argue that it is critical to understand what user attributes potentially cause users to share fake news. The key to this causal-inference problem is to identify confounders -- variables that cause spurious associations between treatments (e.g., user attributes) and outcome (e.g., user susceptibility). In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities. Learning such user behavior is typically subject to selection bias in users who are susceptible to share news on social media. Drawing on causal inference theories, we first propose a principled approach to alleviating selection bias in fake news dissemination. We then consider the learned unbiased fake news sharing behavior as the surrogate confounder that can fully capture the causal links between user attributes and user susceptibility. We theoretically and empirically characterize the effectiveness of the proposed approach and find that it could be useful in protecting society from the perils of fake news.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.

北京阿比特科技有限公司