亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion models have rapidly become a vital part of deep generative architectures, given today's increasing demands. Obtaining large, high-performance diffusion models demands significant resources, highlighting their importance as intellectual property worth protecting. However, existing watermarking techniques for ownership verification are insufficient when applied to diffusion models. Very recent research in watermarking diffusion models either exposes watermarks during task generation, which harms the imperceptibility, or is developed for conditional diffusion models that require prompts to trigger the watermark. This paper introduces WDM, a novel watermarking solution for diffusion models without imprinting the watermark during task generation. It involves training a model to concurrently learn a Watermark Diffusion Process (WDP) for embedding watermarks alongside the standard diffusion process for task generation. We provide a detailed theoretical analysis of WDP training and sampling, relating it to a shifted Gaussian diffusion process via the same reverse noise. Extensive experiments are conducted to validate the effectiveness and robustness of our approach in various trigger and watermark data configurations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · CASES · 語言模型化 · Performance ·
2024 年 1 月 21 日

Adversarial attacks against NLP Deep Learning models are a significant concern. In particular, adversarial samples exploit the model's sensitivity to small input changes. While these changes appear insignificant on the semantics of the input sample, they result in significant decay in model performance. In this paper, we propose Targeted Paraphrasing via RL (TPRL), an approach to automatically learn a policy to generate challenging samples that most likely improve the model's performance. TPRL leverages FLAN T5, a language model, as a generator and employs a self learned policy using a proximal policy gradient to generate the adversarial examples automatically. TPRL's reward is based on the confusion induced in the classifier, preserving the original text meaning through a Mutual Implication score. We demonstrate and evaluate TPRL's effectiveness in discovering natural adversarial attacks and improving model performance through extensive experiments on four diverse NLP classification tasks via Automatic and Human evaluation. TPRL outperforms strong baselines, exhibits generalizability across classifiers and datasets, and combines the strengths of language modeling and reinforcement learning to generate diverse and influential adversarial examples.

Foundation models encode rich representations that can be adapted to a desired task by fine-tuning on task-specific data. However, fine-tuning a model on one particular data distribution often compromises the model's original performance on other distributions. Current methods for robust fine-tuning utilize hand-crafted regularization techniques to constrain the fine-tuning process towards the base foundation model. Yet, it is hard to precisely specify what characteristics of the foundation model to retain during fine-tuning, as this depends on how the pre-training, fine-tuning, and evaluation data distributions relate to each other. We propose AutoFT, a data-driven approach for guiding foundation model fine-tuning. AutoFT optimizes fine-tuning hyperparameters to maximize performance on a small out-of-distribution (OOD) validation set. To guide fine-tuning in a granular way, AutoFT searches a highly expressive hyperparameter space that includes weight coefficients for many different losses, in addition to learning rate and weight decay values. We evaluate AutoFT on nine natural distribution shifts which include domain shifts and subpopulation shifts. Our experiments show that AutoFT significantly improves generalization to new OOD data, outperforming existing robust fine-tuning methods. Notably, AutoFT achieves new state-of-the-art performance on the WILDS-iWildCam and WILDS-FMoW benchmarks, outperforming the previous best methods by $6.0\%$ and $1.5\%$, respectively.

The rapid growth of transformer-based models increases the concerns about their integrity and ownership insurance. Watermarking addresses this issue by embedding a unique identifier into the model, while preserving its performance. However, most existing approaches require to optimize the weights to imprint the watermark signal, which is not suitable at scale due to the computational cost. This paper explores watermarks with virtually no computational cost, applicable to a non-blind white-box setting (assuming access to both the original and watermarked networks). They generate functionally equivalent copies by leveraging the models' invariance, via operations like dimension permutations or scaling/unscaling. This enables to watermark models without any change in their outputs and remains stealthy. Experiments demonstrate the effectiveness of the approach and its robustness against various model transformations (fine-tuning, quantization, pruning), making it a practical solution to protect the integrity of large models.

Multimodal image-text models have shown remarkable performance in the past few years. However, evaluating robustness against distribution shifts is crucial before adopting them in real-world applications. In this work, we investigate the robustness of 12 popular open-sourced image-text models under common perturbations on five tasks (image-text retrieval, visual reasoning, visual entailment, image captioning, and text-to-image generation). In particular, we propose several new multimodal robustness benchmarks by applying 17 image perturbation and 16 text perturbation techniques on top of existing datasets. We observe that multimodal models are not robust to image and text perturbations, especially to image perturbations. Among the tested perturbation methods, character-level perturbations constitute the most severe distribution shift for text, and zoom blur is the most severe shift for image data. We also introduce two new robustness metrics (\textbf{MMI} for MultiModal Impact score and \textbf{MOR} for Missing Object Rate) for proper evaluations of multimodal models. We hope our extensive study sheds light on new directions for the development of robust multimodal models. More details can be found on the project webpage: \url{//MMRobustness.github.io}.

Neural construction models have shown promising performance for Vehicle Routing Problems (VRPs) by adopting either the Autoregressive (AR) or Non-Autoregressive (NAR) learning approach. While AR models produce high-quality solutions, they generally have a high inference latency due to their sequential generation nature. Conversely, NAR models generate solutions in parallel with a low inference latency but generally exhibit inferior performance. In this paper, we propose a generic Guided Non-Autoregressive Knowledge Distillation (GNARKD) method to obtain high-performance NAR models having a low inference latency. GNARKD removes the constraint of sequential generation in AR models while preserving the learned pivotal components in the network architecture to obtain the corresponding NAR models through knowledge distillation. We evaluate GNARKD by applying it to three widely adopted AR models to obtain NAR VRP solvers for both synthesized and real-world instances. The experimental results demonstrate that GNARKD significantly reduces the inference time (4-5 times faster) with acceptable performance drop (2-3\%). To the best of our knowledge, this study is first-of-its-kind to obtain NAR VRP solvers from AR ones through knowledge distillation.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司