亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-trained neural Language Models (PTLM), such as CodeBERT, are recently used in software engineering as models pre-trained on large source code corpora. Their knowledge is transferred to downstream tasks (e.g. code clone detection) via fine-tuning. In natural language processing (NLP), other alternatives for transferring the knowledge of PTLMs are explored through using adapters, compact, parameter efficient modules inserted in the layers of the PTLM. Although adapters are known to facilitate adapting to many downstream tasks compared to fine-tuning the model that require retraining all of the models' parameters -- which owes to the adapters' plug and play nature and being parameter efficient -- their usage in software engineering is not explored. Here, we explore the knowledge transfer using adapters and based on the Naturalness Hypothesis proposed by Hindle et. al \cite{hindle2016naturalness}. Thus, studying the bimodality of adapters for two tasks of cloze test and code clone detection, compared to their benchmarks from the CodeXGLUE platform. These adapters are trained using programming languages and are inserted in a PTLM that is pre-trained on English corpora (N-PTLM). Three programming languages, C/C++, Python, and Java, are studied along with extensive experiments on the best setup used for adapters. Improving the results of the N-PTLM confirms the success of the adapters in knowledge transfer to software engineering, which sometimes are in par with or exceed the results of a PTLM trained on source code; while being more efficient in terms of the number of parameters, memory usage, and inference time. Our results can open new directions to build smaller models for more software engineering tasks. We open source all the scripts and the trained adapters.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

Learning models that offer robust out-of-distribution generalization and fast adaptation is a key challenge in modern machine learning. Modelling causal structure into neural networks holds the promise to accomplish robust zero and few-shot adaptation. Recent advances in differentiable causal discovery have proposed to factorize the data generating process into a set of modules, i.e. one module for the conditional distribution of every variable where only causal parents are used as predictors. Such a modular decomposition of knowledge enables adaptation to distributions shifts by only updating a subset of parameters. In this work, we systematically study the generalization and adaption performance of such modular neural causal models by comparing it to monolithic models and structured models where the set of predictors is not constrained to causal parents. Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes and offer robust generalization. We also found that the effects are more significant for sparser graphs as compared to denser graphs.

Transfer learning aims to leverage knowledge from pre-trained models to benefit the target task. Prior transfer learning work mainly transfers from a single model. However, with the emergence of deep models pre-trained from different resources, model hubs consisting of diverse models with various architectures, pre-trained datasets and learning paradigms are available. Directly applying single-model transfer learning methods to each model wastes the abundant knowledge of the model hub and suffers from high computational cost. In this paper, we propose a Hub-Pathway framework to enable knowledge transfer from a model hub. The framework generates data-dependent pathway weights, based on which we assign the pathway routes at the input level to decide which pre-trained models are activated and passed through, and then set the pathway aggregation at the output level to aggregate the knowledge from different models to make predictions. The proposed framework can be trained end-to-end with the target task-specific loss, where it learns to explore better pathway configurations and exploit the knowledge in pre-trained models for each target datum. We utilize a noisy pathway generator and design an exploration loss to further explore different pathways throughout the model hub. To fully exploit the knowledge in pre-trained models, each model is further trained by specific data that activate it, which ensures its performance and enhances knowledge transfer. Experiment results on computer vision and reinforcement learning tasks demonstrate that the proposed Hub-Pathway framework achieves the state-of-the-art performance for model hub transfer learning.

State-of-the-art computer vision models are mostly trained with supervised learning using human-labeled images, which limits their scalability due to the expensive annotation cost. While self-supervised representation learning has achieved impressive progress, it still requires a second stage of finetuning on labeled data. On the other hand, models pre-trained with large-scale text-image supervision (e.g., CLIP) have enabled zero-shot transfer to downstream image classification tasks. However, the zero-shot performance of CLIP-like models are often insufficient for real-world adoption. In this paper, we aim to leverage the abundant unlabeled data to improve the performance of a pre-trained zero-shot classifier on downstream tasks. We propose Masked Unsupervised Self-Training (MUST), a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images. MUST jointly optimizes three objectives to learn both class-level global feature and pixel-level local feature and enforces a regularization between the two. We demonstrate the efficacy of MUST on 8 downstream tasks across a variety of domains, where it improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification. For instance, MUST achieves a zero-shot top-1 accuracy of 77.7% on ImageNet using ViT-B, +9.4% higher than CLIP. Our code is available at //github.com/salesforce/MUST.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

北京阿比特科技有限公司