亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed privacy-preserving regression schemes have been developed and extended in various fields, where multiparty collaboratively and privately run optimization algorithms, e.g., Gradient Descent, to learn a set of optimal parameters. However, traditional Gradient-Descent based methods fail to solve problems which contains objective functions with L1 regularization, such as Lasso regression. In this paper, we present Federated Coordinate Descent, a new distributed scheme called FCD, to address this issue securely under multiparty scenarios. Specifically, through secure aggregation and added perturbations, our scheme guarantees that: (1) no local information is leaked to other parties, and (2) global model parameters are not exposed to cloud servers. The added perturbations can eventually be eliminated by each party to derive a global model with high performance. We show that the FCD scheme fills the gap of multiparty secure Coordinate Descent methods and is applicable for general linear regressions, including linear, ridge and lasso regressions. Theoretical security analysis and experimental results demonstrate that FCD can be performed effectively and efficiently, and provide as low MAE measure as centralized methods under tasks of three types of linear regressions on real-world UCI datasets.

相關內容

坐標下降法(coordinate descent)是一種非梯度優化算法。算法在每次迭代中,在當前點處沿一個坐標方向進行一維搜索以求得一個函數的局部極小值。在整個過程中循環使用不同的坐標方向。對于不可拆分的函數而言,算法可能無法在較小的迭代步數中求得最優解。為了加速收斂,可以采用一個適當的坐標系,例如通過主成分分析獲得一個坐標間盡可能不相互關聯的新坐標系.

The lasso is the most famous sparse regression and feature selection method. One reason for its popularity is the speed at which the underlying optimization problem can be solved. Sorted L-One Penalized Estimation (SLOPE) is a generalization of the lasso with appealing statistical properties. In spite of this, the method has not yet reached widespread interest. A major reason for this is that current software packages that fit SLOPE rely on algorithms that perform poorly in high dimensions. To tackle this issue, we propose a new fast algorithm to solve the SLOPE optimization problem, which combines proximal gradient descent and proximal coordinate descent steps. We provide new results on the directional derivative of the SLOPE penalty and its related SLOPE thresholding operator, as well as provide convergence guarantees for our proposed solver. In extensive benchmarks on simulated and real data, we show that our method outperforms a long list of competing algorithms.

Recently introduced distributed zeroth-order optimization (ZOO) algorithms have shown their utility in distributed reinforcement learning (RL). Unfortunately, in the gradient estimation process, almost all of them require random samples with the same dimension as the global variable and/or require evaluation of the global cost function, which may induce high estimation variance for large-scale networks. In this paper, we propose a novel distributed zeroth-order algorithm by leveraging the network structure inherent in the optimization objective, which allows each agent to estimate its local gradient by local cost evaluation independently, without use of any consensus protocol. The proposed algorithm exhibits an asynchronous update scheme, and is designed for stochastic non-convex optimization with a possibly non-convex feasible domain based on the block coordinate descent method. The algorithm is later employed as a distributed model-free RL algorithm for distributed linear quadratic regulator design, where a learning graph is designed to describe the required interaction relationship among agents in distributed learning. We provide an empirical validation of the proposed algorithm to benchmark its performance on convergence rate and variance against a centralized ZOO algorithm.

In this paper we discuss an application of Stochastic Approximation to statistical estimation of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized stochastic optimization problem on each stage of a multistage algorithm; each problem being solved to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algorithm. Assuming that the problem objective is smooth and quadratically minorated and stochastic perturbations are sub-Gaussian, our analysis prescribes the method parameters which ensure fast convergence of the estimation error (the radius of a confidence ball of a given norm around the approximate solution). This convergence is linear during the first "preliminary" phase of the routine and is sublinear during the second "asymptotic" phase. We consider an application of the proposed approach to sparse Generalized Linear Regression problem. In this setting, we show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution. We also present a numerical study illustrating the performance of the algorithm on high-dimensional simulation data.

We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge-evaluations are more expensive than vertex-expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.

Machine learning models can leak information about the data used to train them. To mitigate this issue, Differentially Private (DP) variants of optimization algorithms like Stochastic Gradient Descent (DP-SGD) have been designed to trade-off utility for privacy in Empirical Risk Minimization (ERM) problems. In this paper, we propose Differentially Private proximal Coordinate Descent (DP-CD), a new method to solve composite DP-ERM problems. We derive utility guarantees through a novel theoretical analysis of inexact coordinate descent. Our results show that, thanks to larger step sizes, DP-CD can exploit imbalance in gradient coordinates to outperform DP-SGD. We also prove new lower bounds for composite DP-ERM under coordinate-wise regularity assumptions, that are nearly matched by DP-CD. For practical implementations, we propose to clip gradients using coordinate-wise thresholds that emerge from our theory, avoiding costly hyperparameter tuning. Experiments on real and synthetic data support our results, and show that DP-CD compares favorably with DP-SGD.

In this paper, we study differentially private empirical risk minimization (DP-ERM). It has been shown that the worst-case utility of DP-ERM reduces polynomially as the dimension increases. This is a major obstacle to privately learning large machine learning models. In high dimension, it is common for some model's parameters to carry more information than others. To exploit this, we propose a differentially private greedy coordinate descent (DP-GCD) algorithm. At each iteration, DP-GCD privately performs a coordinate-wise gradient step along the gradients' (approximately) greatest entry. We show theoretically that DP-GCD can achieve a logarithmic dependence on the dimension for a wide range of problems by naturally exploiting their structural properties (such as quasi-sparse solutions). We illustrate this behavior numerically, both on synthetic and real datasets.

Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.

Intermittent connectivity of clients to the parameter server (PS) is a major bottleneck in federated edge learning frameworks. The lack of constant connectivity induces a large generalization gap, especially when the local data distribution amongst clients exhibits heterogeneity. To overcome intermittent communication outages between clients and the central PS, we introduce the concept of collaborative relaying wherein the participating clients relay their neighbors' local updates to the PS in order to boost the participation of clients with poor connectivity to the PS. We propose a semi-decentralized federated learning framework in which at every communication round, each client initially computes a local consensus of a subset of its neighboring clients' updates, and eventually transmits to the PS a weighted average of its own update and those of its neighbors'. We appropriately optimize these local consensus weights to ensure that the global update at the PS is unbiased with minimal variance - consequently improving the convergence rate. Numerical evaluations on the CIFAR-10 dataset demonstrate that our collaborative relaying approach outperforms federated averaging-based benchmarks for learning over intermittently-connected networks such as when the clients communicate over millimeter wave channels with intermittent blockages.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

北京阿比特科技有限公司