亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the consensus interdiction problem (CIP), in which the goal is to maximize the convergence time of consensus averaging dynamics subject to removing a limited number of network edges. We first show that CIP can be cast as an effective resistance interdiction problem (ERIP), in which the goal is to remove a limited number of network edges to maximize the effective resistance between a source node and a sink node. We show that ERIP is strongly NP-hard, even for bipartite graphs of diameter three with fixed source/sink edges, and establish the same hardness result for the CIP. We then show that both ERIP and CIP cannot be approximated up to a (nearly) polynomial factor assuming exponential time hypothesis. Subsequently, we devise a polynomial-time $mn$-approximation algorithm for the ERIP that only depends on the number of nodes $n$ and the number of edges $m$, but is independent of the size of edge resistances. Finally, using a quadratic program formulation for the CIP, we devise an iterative approximation algorithm to find a local optimal solution for the CIP.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

A finite dynamical system with $n$ components is a function $f:X\to X$ where $X=X_1\times\dots\times X_n$ is a product of $n$ finite intervals of integers. The structure of such a system $f$ is represented by a signed digraph $G$, called interaction graph: there are $n$ vertices, one per component, and the signed arcs describe the positive and negative influences between them. Finite dynamical systems are usual models for gene networks. In this context, it is often assumed that $f$ is {\em degree-bounded}, that is, the size of each $X_i$ is at most the out-degree of $i$ in $G$ plus one. Assuming that $G$ is connected and that $f$ is degree-bounded, we prove the following: if $G$ is not a cycle, then $f^{n+1}$ may be a constant. In that case, $f$ describes a very simple dynamics: a global convergence toward a unique fixed point in $n+1$ iterations. This shows that, in the degree-bounded case, the fact that $f$ describes a complex dynamics {\em cannot} be deduced from its interaction graph. We then widely generalize the above result, obtaining, as immediate consequences, other limits on what can be deduced from the interaction graph only, as the following weak converses of Thomas' rules: if $G$ is connected and has a positive (negative) cycle, then $f$ may have two (no) fixed points.

With the advent of Network Function Virtualization (NFV), network services that traditionally run on proprietary dedicated hardware can now be realized using Virtual Network Functions (VNFs) that are hosted on general-purpose commodity hardware. This new network paradigm offers a great flexibility to Internet service providers (ISPs) for efficiently operating their networks (collecting network statistics, enforcing management policies, etc.). However, introducing NFV requires an investment to deploy VNFs at certain network nodes (called VNF-nodes), which has to account for practical constraints such as the deployment budget and the VNF-node capacity. To that end, it is important to design a joint VNF-nodes placement and capacity allocation algorithm that can maximize the total amount of network flows that are fully processed by the VNF-nodes while respecting such practical constraints. In contrast to most prior work that often neglects either the budget constraint or the capacity constraint, we explicitly consider both of them. We prove that accounting for these constraints introduces several new challenges. Specifically, we prove that the studied problem is not only NP-hard but also non-submodular. To address these challenges, we introduce a novel relaxation method such that the objective function of the relaxed placement subproblem becomes submodular. Leveraging this useful submodular property, we propose two algorithms that achieve an approximation ratio of $\frac{1}{2}(1-1/e)$ and $\frac{1}{3}(1-1/e)$ for the original non-relaxed problem, respectively. Finally, we corroborate the effectiveness of the proposed algorithms through extensive evaluations using trace-driven simulations.

We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. To better achieve their dual aims of equity and efficiency, social planners intend to maximize the minimum fill rate across agents, where each agent's fill rate is determined by a one-time allocation that must be irrevocably decided upon its arrival. For an arbitrarily correlated sequence of demands, we establish upper bounds on both the expected minimum fill rate (ex-post fairness) and the minimum expected fill rate (ex-ante fairness) achievable by any policy. Our bounds are parameterized by the number of agents and the expected demand-to-supply ratio. Further, we show that for any set of parameters, a simple adaptive policy of projected proportional allocation achieves the best possible fairness guarantee, ex post as well as ex ante. We obtain the performance guarantees of our proposed adaptive policy by inductively designing lower-bound functions on its corresponding value-to-go. Our policy is transparent and easy to implement, as it does not rely on distributional information beyond the first conditional moments. Despite our policy's simplicity, we demonstrate that it provides significant improvement over the class of non-adaptive target-fill-rate policies by characterizing the performance of the optimal such policy. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a standard SEIR model approach that is commonly used to forecast pandemic trajectories. In such a setting, our simple adaptive policy significantly outperforms its theoretical guarantee as well as the optimal target-fill-rate policy.

The tree is an essential data structure in many applications. In a distributed application, such as a distributed file system, the tree is replicated.To improve performance and availability, different clients should be able to update their replicas concurrently and without coordination. Such concurrent updates converge if the effects commute, but nonetheless, concurrent moves can lead to incorrect states and even data loss. Such a severe issue cannot be ignored; ultimately, only one of the conflicting moves may be allowed to take effect. However, as it is rare, a solution should be lightweight. Previous approaches would require preventative cross-replica coordination, or totally order move operations after-the-fact, requiring roll-back and compensation operations. In this paper, we present a novel replicated tree that supports coordination-free concurrent atomic moves, and provably maintains the tree invariant. Our analysis identifies cases where concurrent moves are inherently safe, and we devise a lightweight, coordination-free, rollback-free algorithm for the remaining cases, such that a maximal safe subset of moves takes effect. We present a detailed analysis of the concurrency issues with trees, justifying our replicated tree data structure. We provide mechanized proof that the data structure is convergent and maintains the tree invariant. Finally, we compare the response time and availability of our design against the literature.

We consider infinite-horizon discounted Markov decision problems with finite state and action spaces. We show that with direct parametrization in the policy space, the weighted value function, although non-convex in general, is both quasi-convex and quasi-concave. While quasi-convexity helps explain the convergence of policy gradient methods to global optima, quasi-concavity hints at their convergence guarantees using arbitrarily large step sizes that are not dictated by the Lipschitz constant charactering smoothness of the value function. In particular, we show that when using geometrically increasing step sizes, a general class of policy mirror descent methods, including the natural policy gradient method and a projected Q-descent method, all enjoy a linear rate of convergence without relying on entropy or other strongly convex regularization. In addition, we develop a theory of weak gradient-mapping dominance and use it to prove sharper sublinear convergence rate of the projected policy gradient method. Finally, we also analyze the convergence rate of an inexact policy mirror descent method and estimate its sample complexity under a simple generative model.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司