亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the initial value problem of general nonlinear stochastic fractional integro-differential equations with weakly singular kernels. Our effort is devoted to establishing some fine estimates to include all the cases of Abel-type singular kernels. Firstly, the existence, uniqueness and continuous dependence on the initial value of the true solution under local Lipschitz condition and linear growth condition are derived in detail. Secondly, the Euler--Maruyama method is developed for solving numerically the equation, and then its strong convergence is proven under the same conditions as the well-posedness. Moreover, we obtain the accurate convergence rate of this method under global Lipschitz condition and linear growth condition. In particular, the Euler--Maruyama method can reach strong first-order superconvergence when $\alpha = 1$. Finally, several numerical tests are reported for verification of the theoretical findings.

相關內容

We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation. By exploiting this property, we establish stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a parabolic type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. Furthermore, we show that these schemes can be interpreted as projector-splitting integrators and are strongly related to the scheme proposed by Lubich et al. [BIT Num. Math., 54:171-188, 2014; SIAM J. on Num. Anal., 53:917-941, 2015], to which our stability analysis applies as well. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions.

We describe a new approach to derive numerical approximations of boundary conditions for high-order accurate finite-difference approximations. The approach, called the Local Compatibility Boundary Condition (LCBC) method, uses boundary conditions and compatibility boundary conditions derived from the governing equations, as well as interior and boundary grid values, to construct a local polynomial, whose degree matches the order of accuracy of the interior scheme, centered at each boundary point. The local polynomial is then used to derive a discrete formula for each ghost point in terms of the data. This approach leads to centered approximations that are generally more accurate and stable than one-sided approximations. Moreover, the stencil approximations are local since they do not couple to neighboring ghost-point values which can occur with traditional compatibility conditions. The local polynomial is derived using continuous operators and derivatives which enables the automatic construction of stencil approximations at different orders of accuracy. The LCBC method is developed here for problems governed by second-order partial differential equations, and it is verified for a wide range of sample problems, both time-dependent and time-independent, in two space dimensions and for schemes up to sixth-order accuracy.

This paper studies quasi-Newton methods for solving strongly-convex-strongly-concave saddle point problems (SPP). We propose a variant of general greedy Broyden family update for SPP, which has explicit local superlinear convergence rate of ${\mathcal O}\big(\big(1-\frac{1}{n\kappa^2}\big)^{k(k-1)/2}\big)$, where $n$ is dimensions of the problem, $\kappa$ is the condition number and $k$ is the number of iterations. The design and analysis of proposed algorithm are based on estimating the square of indefinite Hessian matrix, which is different from classical quasi-Newton methods in convex optimization. We also present two specific Broyden family algorithms with BFGS-type and SR1-type updates, which enjoy the faster local convergence rate of $\mathcal O\big(\big(1-\frac{1}{n}\big)^{k(k-1)/2}\big)$.

In this paper, we propose a $C^{0}$ interior penalty method for $m$th-Laplace equation on bounded Lipschitz polyhedral domain in $\mathbb{R}^{d}$, where $m$ and $d$ can be any positive integers. The standard $H^{1}$-conforming piecewise $r$-th order polynomial space is used to approximate the exact solution $u$, where $r$ can be any integer greater than or equal to $m$. Unlike the interior penalty method in [T.~Gudi and M.~Neilan, {\em An interior penalty method for a sixth-order elliptic equation}, IMA J. Numer. Anal., \textbf{31(4)} (2011), pp. 1734--1753], we avoid computing $D^{m}$ of numerical solution on each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore our method can be easily implemented. After proving discrete $H^{m}$-norm bounded by the natural energy semi-norm associated with our method, we manage to obtain stability and optimal convergence with respect to discrete $H^{m}$-norm. Numerical experiments validate our theoretical estimate.

We formulate natural gradient variational inference (VI), expectation propagation (EP), and posterior linearisation (PL) as extensions of Newton's method for optimising the parameters of a Bayesian posterior distribution. This viewpoint explicitly casts inference algorithms under the framework of numerical optimisation. We show that common approximations to Newton's method from the optimisation literature, namely Gauss-Newton and quasi-Newton methods (e.g., the BFGS algorithm), are still valid under this 'Bayes-Newton' framework. This leads to a suite of novel algorithms which are guaranteed to result in positive semi-definite covariance matrices, unlike standard VI and EP. Our unifying viewpoint provides new insights into the connections between various inference schemes. All the presented methods apply to any model with a Gaussian prior and non-conjugate likelihood, which we demonstrate with (sparse) Gaussian processes and state space models.

A finite element analysis of a Dirichlet boundary control problem governed by the linear parabolic equation is presented in this article. The Dirichlet control is considered in a closed and convex subset of the energy space $H^1(\Omega \times(0,T)).$ We prove well-posedness and discuss some regularity results for the control problem. We derive the optimality system for the optimal control problem. The first order necessary optimality condition results in a simplified Signorini type problem for control variable. The space discretization of the state variable is done using conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. To discretize the control we use the conforming prismatic Lagrange finite elements. We derive an optimal order of convergence of error in control, state, and adjoint state. The theoretical results are corroborated by some numerical tests.

Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are close to each other. This makes integrating eigendecomposition into deep networks difficult and often results in poor convergence, particularly when dealing with large matrices. While this can be mitigated by partitioning the data into small arbitrary groups, doing so has no theoretical basis and makes it impossible to exploit the full power of eigendecomposition. In previous work, we mitigated this using SVD during the forward pass and PI to compute the gradients during the backward pass. However, the iterative deflation procedure required to compute multiple eigenvectors using PI tends to accumulate errors and yield inaccurate gradients. Here, we show that the Taylor expansion of the SVD gradient is theoretically equivalent to the gradient obtained using PI without relying in practice on an iterative process and thus yields more accurate gradients. We demonstrate the benefits of this increased accuracy for image classification and style transfer.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司