亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale vision-language pre-training has achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require structured representations, i.e., representations of objects, attributes, and relations. As illustrated in Fig.~reffig:case (a), the models cannot make a distinction between ``An astronaut rides a horse" and ``A horse rides an astronaut". This is because they fail to fully leverage structured knowledge when learning representations in multi-modal scenarios. In this paper, we present an end-to-end framework Structure-CLIP, which integrates Scene Graph Knowledge (SGK) to enhance multi-modal structured representations. Firstly, we use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations. Moreover, a Knowledge-Enhance Encoder (KEE) is proposed to leverage SGK as input to further enhance structured representations. To verify the effectiveness of the proposed framework, we pre-train our model with the aforementioned approaches and conduct experiments on downstream tasks. Experimental results demonstrate that Structure-CLIP achieves state-of-the-art (SOTA) performance on VG-Attribution and VG-Relation datasets, with 12.5% and 4.1% ahead of the multi-modal SOTA model respectively. Meanwhile, the results on MSCOCO indicate that Structure-CLIP significantly enhances the structured representations while maintaining the ability of general representations. Our code is available at //github.com/zjukg/Structure-CLIP.

相關內容

Self-training has gained attraction because of its simplicity and versatility, yet it is vulnerable to noisy pseudo-labels caused by erroneous confidence. Several solutions have been proposed to handle the problem, but they require significant modifications in self-training algorithms or model architecture, and most have limited applicability in tabular domains. To address this issue, we explore a novel direction of reliable confidence in self-training contexts and conclude that the confidence, which represents the value of the pseudo-label, should be aware of the cluster assumption. In this regard, we propose Cluster-Aware Self-Training (CAST) for tabular data, which enhances existing self-training algorithms at a negligible cost without significant modifications. Concretely, CAST regularizes the confidence of the classifier by leveraging local density for each class in the labeled training data, forcing the pseudo-labels in low-density regions to have lower confidence. Extensive empirical evaluations on up to 21 real-world datasets confirm not only the superior performance of CAST but also its robustness in various setups in self-training contexts.

Implementing fine-grained emotion control is crucial for emotion generation tasks because it enhances the expressive capability of the generative model, allowing it to accurately and comprehensively capture and express various nuanced emotional states, thereby improving the emotional quality and personalization of generated content. Generating fine-grained facial animations that accurately portray emotional expressions using only a portrait and an audio recording presents a challenge. In order to address this challenge, we propose a visual attribute-guided audio decoupler. This enables the obtention of content vectors solely related to the audio content, enhancing the stability of subsequent lip movement coefficient predictions. To achieve more precise emotional expression, we introduce a fine-grained emotion coefficient prediction module. Additionally, we propose an emotion intensity control method using a fine-grained emotion matrix. Through these, effective control over emotional expression in the generated videos and finer classification of emotion intensity are accomplished. Subsequently, a series of 3DMM coefficient generation networks are designed to predict 3D coefficients, followed by the utilization of a rendering network to generate the final video. Our experimental results demonstrate that our proposed method, EmoSpeaker, outperforms existing emotional talking face generation methods in terms of expression variation and lip synchronization. Project page: //peterfanfan.github.io/EmoSpeaker/

Despite recent significant strides achieved by diffusion-based Text-to-Image (T2I) models, current systems are still less capable of ensuring decent compositional generation aligned with text prompts, particularly for the multi-object generation. This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps. While previous research efforts have individually tackled these issues, we assert that a holistic approach is paramount. Thus, we propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores, respectively. Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability. Comprehensive evaluations demonstrate the superior performance of our model in terms of image realism, text-image alignment, and adaptability, notably outperforming prominent baselines. Ultimately, this research paves the way for T2I diffusion models with enhanced compositional capacities and broader applicability.

Knowledge-enhanced neural machine reasoning has garnered significant attention as a cutting-edge yet challenging research area with numerous practical applications. Over the past few years, plenty of studies have leveraged various forms of external knowledge to augment the reasoning capabilities of deep models, tackling challenges such as effective knowledge integration, implicit knowledge mining, and problems of tractability and optimization. However, there is a dearth of a comprehensive technical review of the existing knowledge-enhanced reasoning techniques across the diverse range of application domains. This survey provides an in-depth examination of recent advancements in the field, introducing a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories. We systematically discuss these methods and highlight their correlations, strengths, and limitations. Finally, we elucidate the current application domains and provide insight into promising prospects for future research.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司