In this paper, we consider deploying multiple Unmanned Aerial Vehicles (UAVs) to enhance the computation service of Mobile Edge Computing (MEC) through collaborative computation among UAVs. In particular, the tasks of different types and service requirements in MEC network are offloaded from one UAV to another. To pursue the goal of low-carbon edge computing, we study the problem of minimizing system energy consumption by jointly optimizing computation resource allocation, task scheduling, service placement, and UAV trajectories. Considering the inherent unpredictability associated with task generation and the dynamic nature of wireless fading channels, addressing this problem presents a significant challenge. To overcome this issue, we reformulate the complicated non-convex problem as a Markov decision process and propose a soft actor-critic-based trajectory optimization and resource allocation algorithm to implement a flexible learning strategy. Numerical results illustrate that within a multi-UAV-enabled MEC network, the proposed algorithm effectively reduces the system energy consumption in heterogeneous tasks and services scenarios compared to other baseline solutions.
Generative Engineering Design approaches driven by Deep Generative Models (DGM) have been proposed to facilitate industrial engineering processes. In such processes, designs often come in the form of images, such as blueprints, engineering drawings, and CAD models depending on the level of detail. DGMs have been successfully employed for synthesis of natural images, e.g., displaying animals, human faces and landscapes. However, industrial design images are fundamentally different from natural scenes in that they contain rich structural patterns and long-range dependencies, which are challenging for convolution-based DGMs to generate. Moreover, DGM-driven generation process is typically triggered based on random noisy inputs, which outputs unpredictable samples and thus cannot perform an efficient industrial design exploration. We tackle these challenges by proposing a novel model Self-Attention Adversarial Latent Autoencoder (SA-ALAE), which allows generating feasible design images of complex engineering parts. With SA-ALAE, users can not only explore novel variants of an existing design, but also control the generation process by operating in latent space. The potential of SA-ALAE is shown by generating engineering blueprints in a real automotive design task.
This paper serves as a correction to the conference version. In this work, we explore uplink communication in cell-free (CF) massive multiple-input multiple-output (MaMIMO) systems, employing semi-blind transmission structures to mitigate pilot contamination. We propose a simplified, decentralized method based on Expectation Propagation (EP) for semi-blind channel estimation. By utilizing orthogonal pilots, we preprocess the received signals to establish a simplified equivalent factorization scheme for the transmission process. Moreover, this study integrates Central Limit Theory (CLT) with EP, eliminating the need to introduce new auxiliary variables in the factorization scheme. We also refine the algorithm by assessing the variable scales involved. Finally, a decentralized approach is proposed to significantly reduce the computational demands on the Central Processing Unit (CPU).
In this paper, we investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks. Through an analysis of LLMs' internal factual recall at each reasoning step via Knowledge Neurons, we reveal that LLMs fail to harness the critical factual associations under certain circumstances. Instead, they tend to opt for alternative, shortcut-like pathways to answer reasoning questions. By manually manipulating the recall process of parametric knowledge in LLMs, we demonstrate that enhancing this recall process directly improves reasoning performance whereas suppressing it leads to notable degradation. Furthermore, we assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks. Our findings indicate that CoT can intensify the recall of factual knowledge by encouraging LLMs to engage in orderly and reliable reasoning. Furthermore, we explored how contextual conflicts affect the retrieval of facts during the reasoning process to gain a comprehensive understanding of the factual recall behaviors of LLMs. Code and data will be available soon.
3D GAN inversion aims to project a single image into the latent space of a 3D Generative Adversarial Network (GAN), thereby achieving 3D geometry reconstruction. While there exist encoders that achieve good results in 3D GAN inversion, they are predominantly built on EG3D, which specializes in synthesizing near-frontal views and is limiting in synthesizing comprehensive 3D scenes from diverse viewpoints. In contrast to existing approaches, we propose a novel framework built on PanoHead, which excels in synthesizing images from a 360-degree perspective. To achieve realistic 3D modeling of the input image, we introduce a dual encoder system tailored for high-fidelity reconstruction and realistic generation from different viewpoints. Accompanying this, we propose a stitching framework on the triplane domain to get the best predictions from both. To achieve seamless stitching, both encoders must output consistent results despite being specialized for different tasks. For this reason, we carefully train these encoders using specialized losses, including an adversarial loss based on our novel occlusion-aware triplane discriminator. Experiments reveal that our approach surpasses the existing encoder training methods qualitatively and quantitatively. Please visit the project page: //berkegokmen1.github.io/dual-enc-3d-gan-inv.
In this paper, we observe an interesting phenomenon for a hybridizable discontinuous Galerkin (HDG) method for eigenvalue problems. Specifically, using the same finite element method, we may achieve both upper and lower eigenvalue bounds simultaneously, simply by the fine tuning of the stabilization parameter. Based on this observation, a high accuracy algorithm for computing eigenvalues is designed to yield higher convergence rate at a lower computational cost. Meanwhile, we demonstrate that certain type of HDG methods can only provide upper bounds. As a by-product, the asymptotic upper bound property of the Brezzi-Douglas-Marini mixed finite element is also established. Numerical results supporting our theory are given.
In this paper, we propose a novel method for enhancing security in privacy-preserving federated learning using the Vision Transformer. In federated learning, learning is performed by collecting updated information without collecting raw data from each client. However, the problem is that this raw data may be inferred from the updated information. Conventional data-guessing countermeasures (security enhancement methods) for addressing this issue have a trade-off relationship between privacy protection strength and learning efficiency, and they generally degrade model performance. In this paper, we propose a novel method of federated learning that does not degrade model performance and that is robust against data-guessing attacks on updated information. In the proposed method, each client independently prepares a sequence of binary (0 or 1) random numbers, multiplies it by the updated information, and sends it to a server for model learning. In experiments, the effectiveness of the proposed method is confirmed in terms of model performance and resistance to the APRIL (Attention PRIvacy Leakage) restoration attack.
In this paper, we propose a novel method for extracting information from HTML tables with similar contents but with a different structure. We aim to integrate multiple HTML tables into a single table for retrieval of information containing in various Web pages. The method is designed by extending tree-structured LSTM, the neural network for tree-structured data, in order to extract information that is both linguistic and structural information of HTML data. We evaluate the proposed method through experiments using real data published on the WWW.
Automatic Sign Language (SL) recognition is an important task in the computer vision community. To build a robust SL recognition system, we need a considerable amount of data which is lacking particularly in Indian sign language (ISL). In this paper, we introduce a large-scale isolated ISL dataset and a novel SL recognition model based on skeleton graph structure. The dataset covers 2002 daily used common words in the deaf community recorded by 20 (10 male and 10 female) deaf adult signers (contains 40033 videos). We propose a SL recognition model namely Hierarchical Windowed Graph Attention Network (HWGAT) by utilizing the human upper body skeleton graph. The HWGAT tries to capture distinctive motions by giving attention to different body parts induced by the human skeleton graph. The utility of the proposed dataset and the usefulness of our model are evaluated through extensive experiments. We pre-trained the proposed model on the presented dataset and fine-tuned it across different sign language datasets further boosting the performance of 1.10, 0.46, 0.78, and 6.84 percentage points on INCLUDE, LSA64, AUTSL and WLASL respectively compared to the existing state-of-the-art keypoints-based models.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.