亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As the era of autonomous cyber-physical systems (ACPSs), such as unmanned aerial vehicles and self-driving cars, unfolds, the demand for robust testing methodologies is key to realizing the adoption of such systems in real-world scenarios. However, traditional software testing paradigms face unprecedented challenges in ensuring the safety and reliability of these systems. In response, this paper pioneers a strategic roadmap for simulation-based testing of ACPSs, specifically focusing on autonomous systems. Our paper discusses the relevant challenges and obstacles of ACPSs, focusing on test automation and quality assurance, hence advocating for tailored solutions to address the unique demands of autonomous systems. While providing concrete definitions of test cases within simulation environments, we also accentuate the need to create new benchmark assets and the development of automated tools tailored explicitly for autonomous systems in the software engineering community. This paper not only highlights the relevant, pressing issues the software engineering community should focus on (in terms of practices, expected automation, and paradigms), but it also outlines ways to tackle them. By outlining the various domains and challenges of simulation-based testing/development for ACPSs, we provide directions for future research efforts.

相關內容

One solution to automatic speech recognition (ASR) of overlapping speakers is to separate speech and then perform ASR on the separated signals. Commonly, the separator produces artefacts which often degrade ASR performance. Addressing this issue typically requires reference transcriptions to jointly train the separation and ASR networks. This is often not viable for training on real-world in-domain audio where reference transcript information is not always available. This paper proposes a transcription-free method for joint training using only audio signals. The proposed method uses embedding differences of pre-trained ASR encoders as a loss with a proposed modification to permutation invariant training (PIT) called guided PIT (GPIT). The method achieves a 6.4% improvement in word error rate (WER) measures over a signal-level loss and also shows enhancement improvements in perceptual measures such as short-time objective intelligibility (STOI).

In unstructured environments, obstacles are diverse and lack lane markings, making trajectory planning for intelligent vehicles a challenging task. Traditional trajectory planning methods typically involve multiple stages, including path planning, speed planning, and trajectory optimization. These methods require the manual design of numerous parameters for each stage, resulting in significant workload and computational burden. While end-to-end trajectory planning methods are simple and efficient, they often fail to ensure that the trajectory meets vehicle dynamics and obstacle avoidance constraints in unstructured scenarios. Therefore, this paper proposes a novel trajectory planning method based on Graph Neural Networks (GNN) and numerical optimization. The proposed method consists of two stages: (1) initial trajectory prediction using the GNN, (2) trajectory optimization using numerical optimization. First, the graph neural network processes the environment information and predicts a rough trajectory, replacing traditional path and speed planning. This predicted trajectory serves as the initial solution for the numerical optimization stage, which optimizes the trajectory to ensure compliance with vehicle dynamics and obstacle avoidance constraints. We conducted simulation experiments to validate the feasibility of the proposed algorithm and compared it with other mainstream planning algorithms. The results demonstrate that the proposed method simplifies the trajectory planning process and significantly improves planning efficiency.

The advent of cyber-physical systems, such as robots and autonomous vehicles (AVs), brings new opportunities and challenges for the domain of interaction design. Though there is consensus about the value of human-centred development, there is a lack of documented tailored methods and tools for involving multiple stakeholders in design exploration processes. In this paper we present a novel approach using a tangible multi-display toolkit. Orchestrating computer-generated imagery across multiple displays, the toolkit enables multiple viewing angles and perspectives to be captured simultaneously (e.g. top-view, first-person pedestrian view). Participants are able to directly interact with the simulated environment through tangible objects. At the same time, the objects physically simulate the interface's behaviour (e.g. through an integrated LED display). We evaluated the toolkit in design sessions with experts to collect feedback and input on the design of an AV-pedestrian interface. The paper reports on how the combination of tangible objects and multiple displays supports collaborative design explorations.

In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 10000 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.

With the advancement of Internet of Things (IoT) technology, its applications span various sectors such as public, industrial, private and military. In particular, the drone sector has gained significant attention for both commercial and military purposes. As a result, there has been a surge in research focused on vulnerability analysis of drones. However, most security research to mitigate threats to IoT devices has focused primarily on networks, firmware and mobile applications. Of these, the use of fuzzing to analyze the security of firmware requires emulation of the firmware. However, when it comes to drone firmware, the industry lacks emulation and automated fuzzing tools. This is largely due to challenges such as limited input interfaces, firmware encryption and signatures. While it may be tempting to assume that existing emulators and automated analyzers for IoT devices can be applied to drones, practical applications have proven otherwise. In this paper, we discuss the challenges of dynamically analyzing drone firmware and propose potential solutions. In addition, we demonstrate the effectiveness of our methodology by applying it to DJI drones, which have the largest market share.

Societal-scale deployment of autonomous vehicles requires them to coexist with human drivers, necessitating mutual understanding and coordination among these entities. However, purely real-world or simulation-based experiments cannot be employed to explore such complex interactions due to safety and reliability concerns, respectively. Consequently, this work presents an immersive digital twin framework to explore and experiment with the interaction dynamics between autonomous and non-autonomous traffic participants. Particularly, we employ a mixed-reality human-machine interface to allow human drivers and autonomous agents to observe and interact with each other for testing edge-case scenarios while ensuring safety at all times. To validate the versatility of the proposed framework's modular architecture, we first present a discussion on a set of user experience experiments encompassing 4 different levels of immersion with 4 distinct user interfaces. We then present a case study of uncontrolled intersection traversal to demonstrate the efficacy of the proposed framework in validating the interactions of a primary human-driven, autonomous, and connected autonomous vehicle with a secondary semi-autonomous vehicle. The proposed framework has been openly released to guide the future of autonomy-oriented digital twins and research on human-autonomy coexistence.

The Internet of Vehicles (IoV) emerges as a pivotal component for autonomous driving and intelligent transportation systems (ITS), by enabling low-latency big data processing in a dense interconnected network that comprises vehicles, infrastructures, pedestrians and the cloud. Autonomous vehicles are heavily reliant on machine learning (ML) and can strongly benefit from the wealth of sensory data generated at the edge, which calls for measures to reconcile model training with preserving the privacy of sensitive user data. Federated learning (FL) stands out as a promising solution to train sophisticated ML models in vehicular networks while protecting the privacy of road users and mitigating communication overhead. This paper examines the federated optimization of the cutting-edge YOLOv7 model to tackle real-time object detection amid data heterogeneity, encompassing unbalancedness, concept drift, and label distribution skews. To this end, we introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments on high-performance computing (HPC) systems, where we safeguard server-client communications using hybrid encryption. Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles. We demonstrate promising results for the applicability of FL in IoV and hope that FedPylot will provide a basis for future research into federated real-time object detection. The source code is available at //github.com/cyprienquemeneur/fedpylot.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司