亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Both humans and large language models are able to learn language without explicit structural supervision. What inductive biases make this learning possible? We address this fundamental cognitive question by leveraging transformer language models: we inject inductive bias into language models by pretraining on formally-structured data, and then evaluate the biased learners' ability to learn typologically-diverse natural languages. Our experimental setup creates a testbed for hypotheses about inductive bias in human language learning. We investigate the effect of injecting models with three types of inductive bias: 1) recursive, hierarchical processing, 2) crossing token-token relationships that can't be modeled by context-free grammars, and 3) a Zipfian power-law vocabulary distribution. We show that non-context-free relationships form the best inductive biases. Our study leverages the capabilities of transformer models to run controlled language learning experiments that are not possible to run on humans, and surfaces hypotheses about the structures that facilitate language learning in both humans and machines.

相關內容

Age-Period-Cohort (APC) models are well used in the context of modelling health and demographic data to produce smooth estimates of each time trend. When smoothing in the context of APC models, there are two main schools, frequentist using penalised smoothing splines, and Bayesian using random processes with little crossover between them. In this article, we clearly lay out the theoretical link between the two schools, provide examples using simulated and real data to highlight similarities and difference, and help a general APC user understand potentially inaccessible theory from functional analysis. As intuition suggests, both approaches lead to comparable and almost identical in-sample predictions, but random processes within a Bayesian approach might be beneficial for out-of-sample prediction as the sources of uncertainty are captured in a more complete way.

Modern machine learning techniques in the natural language processing domain can be used to automatically generate scripts for goal-oriented dialogue systems. The current article presents a general framework for studying the automatic generation of scripts for goal-oriented dialogue systems. A method for preprocessing dialog data sets in JSON format is described. A comparison is made of two methods for extracting user intent based on BERTopic and latent Dirichlet allocation. A comparison has been made of two implemented algorithms for classifying statements of users of a goal-oriented dialogue system based on logistic regression and BERT transformer models. The BERT transformer approach using the bert-base-uncased model showed better results for the three metrics Precision (0.80), F1-score (0.78) and Matthews correlation coefficient (0.74) in comparison with other methods.

Small-scale models offer various computational advantages, and yet to which extent size is critical for problem-solving abilities remains an open question. Specifically for solving grade school math, the smallest model size so far required to break the 80\% barrier on the GSM8K benchmark remains to be 34B. Our work studies how high-quality datasets may be the key for small language models to acquire mathematical reasoning. We introduce \texttt{TinyGSM}, a synthetic dataset of 12.3M grade school math problems paired with Python solutions, generated fully by GPT-3.5. After finetuning on \texttt{TinyGSM}, we find that a duo of a 1.3B generation model and a 1.3B verifier model can achieve 81.5\% accuracy, outperforming existing models that are orders of magnitude larger. This also rivals the performance of the GPT-3.5 ``teacher'' model (77.4\%), from which our model's training data is generated. Our approach is simple and has two key components: 1) the high-quality dataset \texttt{TinyGSM}, 2) the use of a verifier, which selects the final outputs from multiple candidate generations.

The recent success of neural networks in natural language processing has drawn renewed attention to learning sequence-to-sequence (seq2seq) tasks. While there exists a rich literature that studies classification and regression tasks using solvable models of neural networks, seq2seq tasks have not yet been studied from this perspective. Here, we propose a simple model for a seq2seq task that has the advantage of providing explicit control over the degree of memory, or non-Markovianity, in the sequences -- the stochastic switching-Ornstein-Uhlenbeck (SSOU) model. We introduce a measure of non-Markovianity to quantify the amount of memory in the sequences. For a minimal auto-regressive (AR) learning model trained on this task, we identify two learning regimes corresponding to distinct phases in the stationary state of the SSOU process. These phases emerge from the interplay between two different time scales that govern the sequence statistics. Moreover, we observe that while increasing the integration window of the AR model always improves performance, albeit with diminishing returns, increasing the non-Markovianity of the input sequences can improve or degrade its performance. Finally, we perform experiments with recurrent and convolutional neural networks that show that our observations carry over to more complicated neural network architectures.

We present a novel deep learning method for estimating time-dependent parameters in Markov processes through discrete sampling. Departing from conventional machine learning, our approach reframes parameter approximation as an optimization problem using the maximum likelihood approach. Experimental validation focuses on parameter estimation in multivariate regression and stochastic differential equations (SDEs). Theoretical results show that the real solution is close to SDE with parameters approximated using our neural network-derived under specific conditions. Our work contributes to SDE-based model parameter estimation, offering a versatile tool for diverse fields.

Active learning can improve the efficiency of training prediction models by identifying the most informative new labels to acquire. However, non-response to label requests can impact active learning's effectiveness in real-world contexts. We conceptualise this degradation by considering the type of non-response present in the data, demonstrating that biased non-response is particularly detrimental to model performance. We argue that this sort of non-response is particularly likely in contexts where the labelling process, by nature, relies on user interactions. To mitigate the impact of biased non-response, we propose a cost-based correction to the sampling strategy--the Upper Confidence Bound of the Expected Utility (UCB-EU)--that can, plausibly, be applied to any active learning algorithm. Through experiments, we demonstrate that our method successfully reduces the harm from labelling non-response in many settings. However, we also characterise settings where the non-response bias in the annotations remains detrimental under UCB-EU for particular sampling methods and data generating processes. Finally, we evaluate our method on a real-world dataset from e-commerce platform Taobao. We show that UCB-EU yields substantial performance improvements to conversion models that are trained on clicked impressions. Most generally, this research serves to both better conceptualise the interplay between types of non-response and model improvements via active learning, and to provide a practical, easy to implement correction that helps mitigate model degradation.

The meaning of complex phrases in natural language is composed of their individual components. The task of compositional generalization evaluates a model's ability to understand new combinations of components. Previous studies trained smaller, task-specific models, which exhibited poor generalization. While large language models (LLMs) exhibit impressive generalization abilities on many tasks through in-context learning (ICL), their potential for compositional generalization remains unexplored. In this paper, we first empirically investigate prevailing ICL methods in compositional generalization. We find that they struggle with complex compositional questions due to cumulative errors in long reasoning steps and intricate logic required for tool-making. Consequently, we propose a human-guided tool manipulation framework (HTM) that generates tools for sub-questions and integrates multiple tools. Our method enhances the effectiveness of tool creation and usage with minimal human effort. Experiments show that our method achieves state-of-the-art performance on two compositional generalization benchmarks and outperforms existing methods on the most challenging test split by 70%.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司