亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern computing requires efficient and dependable data transport. Current solutions like Bluetooth, SMS (Short Message Service), and Email have their restrictions on efficiency, file size, compatibility, and cost. In order to facilitate direct communication and resource sharing amongst linked devices, this research study offers a cross-platform peer-to-peer (P2P) data transmission solution that takes advantage of P2P networks' features. The system enables cost-effective and high-performance data transport by using the compute, storage, and network resources of the participating devices. Simple file sharing, adaptability, dependability, and high performance are some of the important benefits. The examination of the suggested solution is presented in this paper and includes discussion of the P2P architecture, data transfer mechanisms, performance assessment, implementation issues, security concerns, and the potential difficulties that needs to be addressed. The research intends to validate the efficacy and potential of the suggested cross-platform P2P data transfer solution, delivering better efficiency and dependability for users across various platforms, through practical investigations and comparisons with existing approaches.

相關內容

P2P:IEEE International Conference on Peer-to-Peer Computing。 Explanation:IEEE對等計算國際會議。 Publisher:IEEE。 SIT:

With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions.

Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at //github.com/williamliujl/LLMRec.

We present Synergy Aware Forgetting Ensemble (SAFE), a method to adapt large models on a diverse collection of data while minimizing the expected cost to remove the influence of training samples from the trained model. This process, also known as selective forgetting or unlearning, is often conducted by partitioning a dataset into shards, training fully independent models on each, then ensembling the resulting models. Increasing the number of shards reduces the expected cost to forget but at the same time it increases inference cost and reduces the final accuracy of the model since synergistic information between samples is lost during the independent model training. Rather than treating each shard as independent, SAFE introduces the notion of a shard graph, which allows incorporating limited information from other shards during training, trading off a modest increase in expected forgetting cost with a significant increase in accuracy, all while still attaining complete removal of residual influence after forgetting. SAFE uses a lightweight system of adapters which can be trained while reusing most of the computations. This allows SAFE to be trained on shards an order-of-magnitude smaller than current state-of-the-art methods (thus reducing the forgetting costs) while also maintaining high accuracy, as we demonstrate empirically on fine-grained computer vision datasets.

The increasing attention given to AI Generated Content (AIGC) has brought a profound impact on various aspects of daily life, industrial manufacturing, and the academic sector. Recognizing the global trends and competitiveness in AIGC development, this study aims to analyze China's current status in the field. The investigation begins with an overview of the foundational technologies and current applications of AIGC. Subsequently, the study delves into the market status, policy landscape, and development trajectory of AIGC in China, utilizing keyword searches to identify relevant scholarly papers. Furthermore, the paper provides a comprehensive examination of AIGC products and their corresponding ecosystem, emphasizing the ecological construction of AIGC. Finally, this paper discusses the challenges and risks faced by the AIGC industry while presenting a forward-looking perspective on the industry's future based on competitive insights in AIGC.

The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.

We propose a novel constrained Bayesian Optimization (BO) algorithm optimizing the design process of Laterally-Diffused Metal-Oxide-Semiconductor (LDMOS) transistors while realizing a target Breakdown Voltage (BV). We convert the constrained BO problem into a conventional BO problem using a Lagrange multiplier. Instead of directly optimizing the traditional Figure-of-Merit (FOM), we set the Lagrangian as the objective function of BO. This adaptive objective function with a changeable Lagrange multiplier can address constrained BO problems which have constraints that require costly evaluations, without the need for additional surrogate models to approximate constraints. Our algorithm enables a device designer to set the target BV in the design space, and obtain a device that satisfies the optimized FOM and the target BV constraint automatically. Utilizing this algorithm, we have also explored the physical limits of the FOM for our devices in 30 - 50 V range within the defined design space.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司