Modular and composable transfer learning is an emerging direction in the field of Parameter Efficient Fine-Tuning, as it enables neural networks to better organize various aspects of knowledge, leading to improved cross-task generalization. In this paper, we introduce a novel approach Customized Polytropon C-Poly that combines task-common skills and task-specific skills, while the skill parameters being highly parameterized using low-rank techniques. Each task is associated with a customizable number of exclusive specialized skills and also benefits from skills shared with peer tasks. A skill assignment matrix is jointly learned. To evaluate our approach, we conducted extensive experiments on the Super-NaturalInstructions and the SuperGLUE benchmarks. Our findings demonstrate that C-Poly outperforms fully-shared, task-specific, and skill-indistinguishable baselines, significantly enhancing the sample efficiency in multi-task learning scenarios.
The quantum convolutional neural network (QCNN) is a promising quantum machine learning (QML) model that is expected to achieve quantum advantages in classically intractable problems. However, the QCNN requires a large number of measurements for data learning, limiting its practical applications in large-scale problems. To alleviate this requirement, we propose a novel architecture called split-parallelizing QCNN (sp-QCNN), which exploits the prior knowledge of quantum data to design an efficient model. This architecture draws inspiration from geometric quantum machine learning and targets translationally symmetric quantum data commonly encountered in physics and quantum computing science. By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits and improve the measurement efficiency by an order of the number of qubits. To demonstrate its effectiveness, we apply the sp-QCNN to a quantum phase recognition task and show that it can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required. Due to its high measurement efficiency, the sp-QCNN can mitigate statistical errors in estimating the gradient of the loss function, thereby accelerating the learning process. These results open up new possibilities for incorporating the prior data knowledge into the efficient design of QML models, leading to practical quantum advantages.
Creating neural text encoders for written Swiss German is challenging due to a dearth of training data combined with dialectal variation. In this paper, we build on several existing multilingual encoders and adapt them to Swiss German using continued pre-training. Evaluation on three diverse downstream tasks shows that simply adding a Swiss German adapter to a modular encoder achieves 97.5% of fully monolithic adaptation performance. We further find that for the task of retrieving Swiss German sentences given Standard German queries, adapting a character-level model is more effective than the other adaptation strategies. We release our code and the models trained for our experiments at //github.com/ZurichNLP/swiss-german-text-encoders
Correlation clustering is a well-known unsupervised learning setting that deals with positive and negative pairwise similarities. In this paper, we study the case where the pairwise similarities are not given in advance and must be queried in a cost-efficient way. Thereby, we develop a generic active learning framework for this task that benefits from several advantages, e.g., flexibility in the type of feedback that a user/annotator can provide, adaptation to any correlation clustering algorithm and query strategy, and robustness to noise. In addition, we propose and analyze a number of novel query strategies suited to this setting. We demonstrate the effectiveness of our framework and the proposed query strategies via several experimental studies.
With the increasing popularity of conversational search, how to evaluate the performance of conversational search systems has become an important question in the IR community. Existing works on conversational search evaluation can mainly be categorized into two streams: (1) constructing metrics based on semantic similarity (e.g. BLUE, METEOR and BERTScore), or (2) directly evaluating the response ranking performance of the system using traditional search methods (e.g. nDCG, RBP and nERR). However, these methods either ignore the information need of the user or ignore the mixed-initiative property of conversational search. This raises the question of how to accurately model user satisfaction in conversational search scenarios. Since explicitly asking users to provide satisfaction feedback is difficult, traditional IR studies often rely on the Cranfield paradigm (i.e., third-party annotation) and user behavior modeling to estimate user satisfaction in search. However, the feasibility and effectiveness of these two approaches have not been fully explored in conversational search. In this paper, we dive into the evaluation of conversational search from the perspective of user satisfaction. We build a novel conversational search experimental platform and construct a Chinese open-domain conversational search behavior dataset containing rich annotations and search behavior data. We also collect third-party satisfaction annotation at the session-level and turn-level, to investigate the feasibility of the Cranfield paradigm in the conversational search scenario. Experimental results show both some consistency and considerable differences between the user satisfaction annotations and third-party annotations. We also propose dialog continuation or ending behavior models (DCEBM) to capture session-level user satisfaction based on turn-level information.
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are transferable to downstream tasks. This study provides an empirical analysis of Barlow Twins (BT), an SSL technique inspired by theories of redundancy reduction in human perception. On downstream tasks, BT representations accelerated learning and transferred across domains. However, limitations exist in disentangling key explanatory factors, with redundancy reduction and invariance alone insufficient for factorization of learned latents into modular, compact, and informative codes. Our ablations study isolated gains from invariance constraints, but the gains were context-dependent. Overall, this work substantiates the potential of Barlow Twins for sample-efficient speech encoding. However, challenges remain in achieving fully hierarchical representations. The analysis methodology and insights pave a path for extensions incorporating further inductive priors and perceptual principles to further enhance the BT self-supervision framework.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.