亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computer vision research has long aimed to build systems that are robust to spatial transformations found in natural data. Traditionally, this is done using data augmentation or hard-coding invariances into the architecture. However, too much or too little invariance can hurt, and the correct amount is unknown a priori and dependent on the instance. Ideally, the appropriate invariance would be learned from data and inferred at test-time. We treat invariance as a prediction problem. Given any image, we use a normalizing flow to predict a distribution over transformations and average the predictions over them. Since this distribution only depends on the instance, we can align instances before classifying them and generalize invariance across classes. The same distribution can also be used to adapt to out-of-distribution poses. This normalizing flow is trained end-to-end and can learn a much larger range of transformations than Augerino and InstaAug. When used as data augmentation, our method shows accuracy and robustness gains on CIFAR 10, CIFAR10-LT, and TinyImageNet.

相關內容

Exponential increase of data has motivated advances of data storage technologies. As a promising storage media, DeoxyriboNucleic Acid (DNA) storage provides a much higher data density and superior durability, compared with state-of-the-art media. In this paper, we provide a tutorial on DNA storage and its role in molecular communications. Firstly, we introduce fundamentals of DNA-based molecular communications and storage (MCS), discussing the basic process of performing DNA storage in MCS. Furthermore, we provide tutorials on how conventional coding schemes that are used in wireless communications can be applied to DNA-based MCS, along with numerical results. Finally, promising research directions on DNA-based data storage in molecular communications are introduced and discussed in this paper.

Verifying the robustness of machine learning models against evasion attacks at test time is an important research problem. Unfortunately, prior work established that this problem is NP-hard for decision tree ensembles, hence bound to be intractable for specific inputs. In this paper, we identify a restricted class of decision tree ensembles, called large-spread ensembles, which admit a security verification algorithm running in polynomial time. We then propose a new approach called verifiable learning, which advocates the training of such restricted model classes which are amenable for efficient verification. We show the benefits of this idea by designing a new training algorithm that automatically learns a large-spread decision tree ensemble from labelled data, thus enabling its security verification in polynomial time. Experimental results on public datasets confirm that large-spread ensembles trained using our algorithm can be verified in a matter of seconds, using standard commercial hardware. Moreover, large-spread ensembles are more robust than traditional ensembles against evasion attacks, at the cost of an acceptable loss of accuracy in the non-adversarial setting.

In recent years, hashing methods have been popular in the large-scale media search for low storage and strong representation capabilities. To describe objects with similar overall appearance but subtle differences, more and more studies focus on hashing-based fine-grained image retrieval. Existing hashing networks usually generate both local and global features through attention guidance on the same deep activation tensor, which limits the diversity of feature representations. To handle this limitation, we substitute convolutional descriptors for attention-guided features and propose an Attributes Grouping and Mining Hashing (AGMH), which groups and embeds the category-specific visual attributes in multiple descriptors to generate a comprehensive feature representation for efficient fine-grained image retrieval. Specifically, an Attention Dispersion Loss (ADL) is designed to force the descriptors to attend to various local regions and capture diverse subtle details. Moreover, we propose a Stepwise Interactive External Attention (SIEA) to mine critical attributes in each descriptor and construct correlations between fine-grained attributes and objects. The attention mechanism is dedicated to learning discrete attributes, which will not cost additional computations in hash codes generation. Finally, the compact binary codes are learned by preserving pairwise similarities. Experimental results demonstrate that AGMH consistently yields the best performance against state-of-the-art methods on fine-grained benchmark datasets.

A large body of research has focused on understanding how online content and disordered eating behaviors are associated. However, there is a lack of comprehensive studies investigating digital food content's influence on individuals with eating disorders. We conducted two rounds of studies (N=23 and 22, respectively) with individuals with eating disorders to understand their motivations and practices of consuming digital food content. Our study reveals that individuals with eating disorders anticipate positive effects from digital food media to overcome their condition, but in practice, it often exacerbates their disorder. We also discovered that many individuals have experienced a cycle of quitting and returning to digital food content consumption. Based on these findings, we articulate design implications for digital food content and multimedia platforms to support individuals vulnerable in everyday online platform interactions.

Misinformation proliferation on social media platforms is a pervasive threat to the integrity of online public discourse. Genuine users, susceptible to others' influence, often unknowingly engage with, endorse, and re-share questionable pieces of information, collectively amplifying the spread of misinformation. In this study, we introduce an empirical framework to investigate users' susceptibility to influence when exposed to unreliable and reliable information sources. Leveraging two datasets on political and public health discussions on Twitter, we analyze the impact of exposure on the adoption of information sources, examining how the reliability of the source modulates this relationship. Our findings provide evidence that increased exposure augments the likelihood of adoption. Users tend to adopt low-credibility sources with fewer exposures than high-credibility sources, a trend that persists even among non-partisan users. Furthermore, the number of exposures needed for adoption varies based on the source credibility, with extreme ends of the spectrum (very high or low credibility) requiring fewer exposures for adoption. Additionally, we reveal that the adoption of information sources often mirrors users' prior exposure to sources with comparable credibility levels. Our research offers critical insights for mitigating the endorsement of misinformation by vulnerable users, offering a framework to study the dynamics of content exposure and adoption on social media platforms.

In recent years, human pose estimation has made significant progress through the implementation of deep learning techniques. However, these techniques still face limitations when confronted with challenging scenarios, including occlusion, diverse appearances, variations in illumination, and overlap. To cope with such drawbacks, we present the Spatial Attention-based Distribution Integration Network (SADI-NET) to improve the accuracy of localization in such situations. Our network consists of three efficient models: the receptive fortified module (RFM), spatial fusion module (SFM), and distribution learning module (DLM). Building upon the classic HourglassNet architecture, we replace the basic block with our proposed RFM. The RFM incorporates a dilated residual block and attention mechanism to expand receptive fields while enhancing sensitivity to spatial information. In addition, the SFM incorporates multi-scale characteristics by employing both global and local attention mechanisms. Furthermore, the DLM, inspired by residual log-likelihood estimation (RLE), reconfigures a predicted heatmap using a trainable distribution weight. For the purpose of determining the efficacy of our model, we conducted extensive experiments on the MPII and LSP benchmarks. Particularly, our model obtained a remarkable $92.10\%$ percent accuracy on the MPII test dataset, demonstrating significant improvements over existing models and establishing state-of-the-art performance.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司