Given a randomized experiment with binary outcomes, exact confidence intervals for the average causal effect of the treatment can be computed through a series of permutation tests. This approach requires minimal assumptions and is valid for all sample sizes, as it does not rely on large-sample approximations such as the central limit theorem. We show that these confidence intervals can be found in $O(n \log n)$ permutation tests in the case of balanced designs, where the treatment and control groups have equal sizes, and $O(n^2)$ permutation tests in the general case. Prior to this work, the most efficient known constructions required $O(n^2)$ such tests in the balanced case [Li and Ding, 2016], and $O(n^4)$ tests in the general case [Rigdon and Hudgens, 2015]. Our results thus facilitate exact inference as a viable option for randomized experiments far larger than those accessible by previous methods.
We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive a priori error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive a posteriori error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.
Profile likelihoods are rarely used in geostatistical models due to the computational burden imposed by repeated decompositions of large variance matrices. Accounting for uncertainty in covariance parameters can be highly consequential in geostatistical models as some covariance parameters are poorly identified, the problem is severe enough that the differentiability parameter of the Matern correlation function is typically treated as fixed. The problem is compounded with anisotropic spatial models as there are two additional parameters to consider. In this paper, we make the following contributions: 1, A methodology is created for profile likelihoods for Gaussian spatial models with Mat\'ern family of correlation functions, including anisotropic models. This methodology adopts a novel reparametrization for generation of representative points, and uses GPUs for parallel profile likelihoods computation in software implementation. 2, We show the profile likelihood of the Mat\'ern shape parameter is often quite flat but still identifiable, it can usually rule out very small values. 3, Simulation studies and applications on real data examples show that profile-based confidence intervals of covariance parameters and regression parameters have superior coverage to the traditional standard Wald type confidence intervals.
Particle Markov Chain Monte Carlo (PMCMC) is a general computational approach to Bayesian inference for general state space models. Our article scales up PMCMC in terms of the number of observations and parameters by generating the parameters that are highly correlated with the states \lq integrated out\rq{} in a pseudo marginal step; the rest of the parameters are generated conditional on the states. The novel contribution of our article is to make the pseudo-marginal step much more efficient by positively correlating the numerator and denominator in the Metropolis-Hastings acceptance probability. This is done in a novel way by expressing the target density of the PMCMC in terms of the basic uniform or normal random numbers used in the sequential Monte Carlo algorithm instead of the standard way in terms of state particles. We also show that the new sampler combines and generalizes two separate particle MCMC approaches: particle Gibbs and the correlated pseudo marginal Metropolis-Hastings. We investigate the performance of the hybrid sampler empirically by applying it to univariate and multivariate stochastic volatility models having both a large number of parameters and a large number of latent states and show that it is much more efficient than competing PMCMC methods.
To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers and Liouville-Bratu-Gelfand equations and comparing its performance with that of conventional time-stepping integrators.
Cross-validation is a widely used technique for evaluating the performance of prediction models. It helps avoid the optimism bias in error estimates, which can be significant for models built using complex statistical learning algorithms. However, since the cross-validation estimate is a random value dependent on observed data, it is essential to accurately quantify the uncertainty associated with the estimate. This is especially important when comparing the performance of two models using cross-validation, as one must determine whether differences in error estimates are a result of chance fluctuations. Although various methods have been developed for making inferences on cross-validation estimates, they often have many limitations, such as stringent model assumptions This paper proposes a fast bootstrap method that quickly estimates the standard error of the cross-validation estimate and produces valid confidence intervals for a population parameter measuring average model performance. Our method overcomes the computational challenge inherent in bootstrapping the cross-validation estimate by estimating the variance component within a random effects model. It is just as flexible as the cross-validation procedure itself. To showcase the effectiveness of our approach, we employ comprehensive simulations and real data analysis across three diverse applications.
The preimage or inverse image of a predefined subset of the range of a deterministic function, called inverse set for short, is the set in the domain whose image equals that predefined subset. To quantify the uncertainty present in estimating such a set, one can construct data-dependent inner and outer confidence sets that serve as sub- and super-sets respectively of the true inverse set. Existing methods require strict assumptions with emphasis on dense functional data. In this work, we generalize the estimation of inverse sets to wider range data types by rigorously proving that, by inverting pre-constructed simultaneous confidence intervals (SCI), confidence sets of multiple levels can be simultaneously constructed with the desired confidence non-asymptotically. We provide valid non-parametric bootstrap algorithm and open source code for constructing confidence sets on dense functional data and multiple regression data. The method is exemplified in two distinct applications: identifying regions in North America experiencing rising temperatures using dense functional data and evaluating the impact of statin usage and COVID-19 on the clinical outcomes of hospitalized patients using logistic regression data.
Linear models are commonly used in causal inference for the analysis of experimental data. This is motivated by the ability to adjust for confounding variables and to obtain treatment effect estimators of increased precision through variance reduction. There is, however, a replicability crisis in applied research through unknown reporting of the data collection process. In modern A/B tests, there is a demand to perform regression-adjusted inference on experimental data in real-time. Linear models are a viable solution because they can be computed online over streams of data. Together, these motivate modernizing linear model theory by providing ``Anytime-Valid'' inference. These replace classical fixed-n Type I error and coverage guarantees with time-uniform guarantees, safeguarding applied researchers from p-hacking, allowing experiments to be continuously monitored and stopped using data-dependent rules. Our contributions leverage group invariance principles and modern martingale techniques. We provide sequential $t$-tests and confidence sequences for regression coefficients of a linear model, in addition to sequential $F$-tests and confidence sequences for collections of regression coefficients. With an emphasis on experimental data, we are able to relax the linear model assumption in randomized designs. In particular, we provide completely nonparametric confidence sequences for the average treatment effect in randomized experiments, without assuming linearity or Gaussianity. A particular feature of our contributions is their simplicity. Our test statistics and confidence sequences have closed-form expressions of the original classical statistics, meaning they are no harder to use in practice. This means that published results can be revisited and reevaluated, and software libraries which implement linear regression can be easily wrapped.
In this paper, practically computable low-order approximations of potentially high-dimensional differential equations driven by geometric rough paths are proposed and investigated. In particular, equations are studied that cover the linear setting, but we allow for a certain type of dissipative nonlinearity in the drift as well. In a first step, a linear subspace is found that contains the solution space of the underlying rough differential equation (RDE). This subspace is associated to covariances of linear Ito-stochastic differential equations which is shown exploiting a Gronwall lemma for matrix differential equations. Orthogonal projections onto the identified subspace lead to a first exact reduced order system. Secondly, a linear map of the RDE solution (quantity of interest) is analyzed in terms of redundant information meaning that state variables are found that do not contribute to the quantity of interest. Once more, a link to Ito-stochastic differential equations is used. Removing such unnecessary information from the RDE provides a further dimension reduction without causing an error. Finally, we discretize a linear parabolic rough partial differential equation in space. The resulting large-order RDE is subsequently tackled with the exact reduction techniques studied in this paper. We illustrate the enormous complexity reduction potential in the corresponding numerical experiments.
We consider the problem of multi-task learning in the high dimensional setting. In particular, we introduce an estimator and investigate its statistical and computational properties for the problem of multiple connected linear regressions known as Data Enrichment/Sharing. The between-tasks connections are captured by a cross-tasks \emph{common parameter}, which gets refined by per-task \emph{individual parameters}. Any convex function, e.g., norm, can characterize the structure of both common and individual parameters. We delineate the sample complexity of our estimator and provide a high probability non-asymptotic bound for estimation error of all parameters under a geometric condition. We show that the recovery of the common parameter benefits from \emph{all} of the pooled samples. We propose an iterative estimation algorithm with a geometric convergence rate and supplement our theoretical analysis with experiments on synthetic data. Overall, we present a first thorough statistical and computational analysis of inference in the data-sharing model.
The line coverage problem is to find efficient routes for coverage of linear features by one or more resource-constrained robots. Linear features model environments such as road networks, power lines, and oil and gas pipelines. We define two modes of travel for robots: servicing and deadheading. A robot services a feature if it performs task-specific actions, e.g., taking images, as it traverses the feature; otherwise, it is deadheading. Traversing the environment incurs costs (e.g., travel time) and demands on resources (e.g., battery life). Servicing and deadheading can have different cost and demand functions, and we further permit them to be direction dependent. We model the environment as a graph and provide an integer linear program. As the problem is NP-hard, we develop a fast and efficient heuristic algorithm, Merge-Embed-Merge (MEM). By exploiting the constructive property of the MEM algorithm, we develop algorithms for line coverage of large graphs with multiple depots. Furthermore, we efficiently incorporate turning costs and nonholonomic constraints into the algorithm. We benchmark the algorithms on road networks and demonstrate them in experiments using aerial robots.