亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In power systems, the incorporation of capacitors offers a wide range of established advantages. These benefits encompass the enhancement of the systems power factor, optimization of voltage profiles, increased capacity for current flow through cables and transformers, and the mitigation of losses attributed to the compensation of reactive power components. Different techniques have been applied to enhance the performance of the distribution system by reducing line losses. This paper focuses on reducing line losses through the optimal placement and sizing of capacitors. Optimal capacitor placement is analysed using load flow analysis with the Newton Raphson method. The placement of capacitor optimization is related to the sensitivity of the buses, which depends on the loss sensitivity factor. The optimal capacitor size is determined using Particle Swarm Optimization (PSO). The analysis is conducted using the IEEE 14 bus system in MATLAB. The results reveal that placing capacitors at the most sensitive bus locations leads to a significant reduction in line losses. Additionally, the optimal capacitor size has a substantial impact on improving the voltage profile and the power loss is reduced by 21.02 percent through the proposed method.

相關內容

This paper presents the design and implementation of a Right Invariant Extended Kalman Filter (RIEKF) for estimating the states of the kinematic base of the Surena V humanoid robot. The state representation of the robot is defined on the Lie group $SE_4(3)$, encompassing the position, velocity, and orientation of the base, as well as the position of the left and right feet. In addition, we incorporated IMU biases as concatenated states within the filter. The prediction step of the RIEKF utilizes IMU equations, while the update step incorporates forward kinematics. To evaluate the performance of the RIEKF, we conducted experiments using the Choreonoid dynamic simulation framework and compared it against a Quaternion-based Extended Kalman Filter (QEKF). The results of the analysis demonstrate that the RIEKF exhibits reduced drift in localization and achieves estimation convergence in a shorter time compared to the QEKF. These findings highlight the effectiveness of the proposed RIEKF for accurate state estimation of the kinematic base in humanoid robotics.

We propose a data-driven approach for propagating uncertainty in stochastic power grid simulations and apply it to the estimation of transmission line failure probabilities. A reduced-order equation governing the evolution of the observed line energy probability density function is derived from the Fokker--Planck equation of the full-order continuous Markov process. Our method consists of estimates produced by numerically integrating this reduced equation. Numerical experiments for scalar- and vector-valued energy functions are conducted using the classical multimachine model under spatiotemporally correlated noise perturbation. The method demonstrates a more sample-efficient approach for computing probabilities of tail events when compared with kernel density estimation. Moreover, it produces vastly more accurate estimates of joint event occurrence when compared with independent models.

Accurate trajectory tracking control for quadrotors is essential for safe navigation in cluttered environments. However, this is challenging in agile flights due to nonlinear dynamics, complex aerodynamic effects, and actuation constraints. In this article, we empirically compare two state-of-the-art control frameworks: the nonlinear-model-predictive controller (NMPC) and the differential-flatness-based controller (DFBC), by tracking a wide variety of agile trajectories at speeds up to 20 m/s (i.e.,72 km/h). The comparisons are performed in both simulation and real-world environments to systematically evaluate both methods from the aspect of tracking accuracy, robustness, and computational efficiency. We show the superiority of NMPC in tracking dynamically infeasible trajectories, at the cost of higher computation time and risk of numerical convergence issues. For both methods, we also quantitatively study the effect of adding an inner-loop controller using the incremental nonlinear dynamic inversion (INDI) method, and the effect of adding an aerodynamic drag model. Our real-world experiments, performed in one of the world's largest motion capture systems, demonstrate more than 78% tracking error reduction of both NMPC and DFBC, indicating the necessity of using an inner-loop controller and aerodynamic drag model for agile trajectory tracking.

In this paper, the adoption patterns of Generative Artificial Intelligence (AI) tools within software engineering are investigated. Influencing factors at the individual, technological, and societal levels are analyzed using a mixed-methods approach for an extensive comprehension of AI adoption. An initial structured interview was conducted with 100 software engineers, employing the Technology Acceptance Model (TAM), the Diffusion of Innovations theory (DOI), and the Social Cognitive Theory (SCT) as guiding theories. A theoretical model named the Human-AI Collaboration and Adaptation Framework (HACAF) was deduced using the Gioia Methodology, characterizing AI adoption in software engineering. This model's validity was subsequently tested through Partial Least Squares - Structural Equation Modeling (PLS-SEM), using data collected from 183 software professionals. The results indicate that the adoption of AI tools in these early integration stages is primarily driven by their compatibility with existing development workflows. This finding counters the traditional theories of technology acceptance. Contrary to expectations, the influence of perceived usefulness, social aspects, and personal innovativeness on adoption appeared to be less significant. This paper yields significant insights for the design of future AI tools and supplies a structure for devising effective strategies for organizational implementation.

We address the choice of penalty parameter in the Smoothness-Penalized Deconvolution (SPeD) method of estimating a probability density under additive measurement error. Cross-validation gives an unbiased estimate of the risk (for the present sample size n) with a given penalty parameter, and this function can be minimized as a function of the penalty parameter. Least-squares cross-validation, which has been proposed for the similar Deconvoluting Kernel Density Estimator (DKDE), performs quite poorly for SPeD. We instead estimate the risk function for a smaller sample size n_1 < n with a given penalty parameter, using this to choose the penalty parameter for sample size n_1, and then use the asymptotics of the optimal penalty parameter to choose for sample size n. In a simulation study, we find that this has dramatically better performance than cross-validation, is an improvement over a SURE-type method previously proposed for this estimator, and compares favorably to the classic DKDE with its recommended plug-in method. We prove that the maximum error in estimating the risk function is of smaller order than its optimal rate of convergence.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

北京阿比特科技有限公司