Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) has recently been envisioned as one of the most promising technologies in the future sixth-generation (6G) communications. In this paper, we consider the joint optimization of the transmit beamforming at the base station (BS) and the phase shifts at the RIS for an RIS-aided wireless communication system with both hardware impairments and imperfect channel state information (CSI). Specifically, we assume both the BS-user channel and the BS-RIS-user channel are imperfect due to the channel estimation error, and we consider the channel estimation error under the statistical CSI error model. Then, the transmit power of the BS is minimized, subject to the outage probability constraint and the unit-modulus constraints on the reflecting elements. By using Bernstein-type inequality and semidefinite relaxation (SDR) to reformulate the constraints, we transform the optimization problem into a semidefinite programming (SDP) problem. Numerical results show that the proposed robust design algorithm can ensure communication quality of the user in the presence of both hardware impairments and imperfect CSI.
The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms.
In this paper, we investigate the problem of pilot optimization and channel estimation of two-way relaying network (TWRN) aided by an intelligent reflecting surface (IRS) with finite discrete phase shifters. In a TWRN, there exists a challenging problem that the two cascading channels from source-to-IRS-to-Relay and destination-to-IRS-to-relay interfere with each other. Via designing the initial phase shifts of IRS and pilot pattern, the two cascading channels are separated by using simple arithmetic operations like addition and subtraction. Then, the least-squares estimator is adopted to estimate the two cascading channels and two direct channels from source to relay and destination to relay. The corresponding mean square errors (MSE) of channel estimators are derived. By minimizing MSE, the optimal phase shift matrix of IRS is proved. Then, two special matrices Hadamard and discrete Fourier transform (DFT) matrix is shown to be two optimal training matrices for IRS. Furthermore, the IRS with discrete finite phase shifters is taken into account. Using theoretical derivation and numerical simulations, we find that 3-4 bits phase shifters are sufficient for IRS to achieve a negligible MSE performance loss. More importantly, the Hadamard matrix requires only one-bit phase shifters to achieve the optimal MSE performance while the DFT matrix requires at least three or four bits to achieve the same performance. Thus, the Hadamard matrix is a perfect choice for channel estimation using low-resolution phase-shifting IRS.
In this paper, we investigate the physical layer security in the reconfigurable intelligent surface (RIS)-aided cell-free networks. A maximum weighted sum secrecy rate problem is formulated by jointly optimizing the active beamforming (BF) at the base stations and passive BF at the RISs. To handle this non-trivial problem, we adopt the alternating optimization to decouple the original problem into two sub-ones, which are solved using the semidefinite relaxation and continuous convex approximation theory. To decrease the complexity for obtaining overall channel state information (CSI), we extend the proposed framework to the case that only requires part of the RIS' CSI. This is achieved via deliberately discarding the RIS that has a small contribution to the user's secrecy rate. Based on this, we formulate a mixed integer non-linear programming problem, and the linear conic relaxation is used to obtained the solutions. Finally, the simulation results show that the proposed schemes can obtain a higher secrecy rate than the existing ones.
This paper considers a reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) downlink communication system where hybrid analog-digital beamforming is employed at the base station (BS). We formulate a power minimization problem by jointly optimizing hybrid beamforming at the BS and the response matrix at the RIS, under the signal-to-interference-plus-noise ratio (SINR) constraints at all users. The problem is highly challenging to solve due to the non-convex SINR constraints as well as the unit-modulus phase shift constraints for both the RIS reflection coefficients and the analog beamformer. A two-layer penalty-based algorithm is proposed to decouple variables in SINR constraints, and manifold optimization is adopted to handle the non-convex unit-modulus constraints. {We also propose a low-complexity sequential optimization method, which optimizes the RIS reflection coefficients, the analog beamformer, and the digital beamformer sequentially without iteration.} Furthermore, the relationship between the power minimization problem and the max-min fairness (MMF) problem is discussed. Simulation results show that the proposed penalty-based algorithm outperforms the state-of-the-art semidefinite relaxation (SDR)-based algorithm. Results also demonstrate that the RIS plays an important role in the power reduction.
Non-orthogonal multiple access (NOMA) assisted semi-grant-free (SGF) transmission has recently received significant research attention due to its outstanding ability of serving grant-free (GF) users with grant-based (GB) users' spectrum, which greatly improves the spectrum efficiency and effectively relieves the massive access problem of 5G and beyond networks. In this paper, we first study the outage performance of the greedy best user scheduling SGF scheme (BU-SGF) by considering the impacts of Rayleigh fading, path loss, and random user locations. In order to tackle the admission fairness problem of the BU-SGF scheme, we propose a fair SGF scheme by applying cumulative distribution function (CDF)-based scheduling (CS-SGF), in which the GF user with the best channel relative to its own statistics will be admitted. Moreover, by employing the theories of order statistics and stochastic geometry, the outage performances of both BU-SGF and CS-SGF schemes are analyzed. Theoretical results show that both schemes can achieve full diversity orders only when the served users' data rate is capped, which severely limits the rate performance of SGF schemes. To further address this issue, we propose a distributed power control strategy to relax such data rate constraint, and derive analytical expressions of the two schemes' outage performances under this strategy. Finally, simulation results validate the fairness performance of the proposed CS-SGF scheme, the effectiveness of the power control strategy, and the accuracy of the theoretical analyses.
This paper considers a two-user non-orthogonal multiple access (NOMA) based infrastructure-to-vehicle (I2V) network, where one user requires reliable safety-critical data transmission and the other pursues high-capacity services. Leveraging only slow fading of channel state information, we aim to maximize the expected sum throughput of the capacity hungry user subject to a constraint on the payload delivery success probability of the reliability sensitive user, by jointly optimizing the transmit powers, target rates, and decoding order. We introduce a dual variable and formulate the optimization as an unconstrained single-objective sequential decision problem. Then, we design a dynamic programming based algorithm to derive the optimal policy that maximizes the Lagrangian. Afterwards, a bisection search based method is proposed to find the optimal dual variable. The proposed strategy is shown by numerical results to be superior to the baseline approaches from the perspectives of expected return, performance region, and objective value.
Multiple-input multiple-output (MIMO) systems greatly increase the overall throughput of wireless systems since they are capable of transmitting multiple streams employing the same time-frequency resources. However, this gain requires an appropriate precoder design and a power allocation technique. In general, precoders and power allocation schemes are designed assuming perfect channel estate information (CSI). Nonetheless, this is an optimistic assumption since real systems only possess partial or imperfect CSI at the transmitter (CSIT). The imperfect CSIT originates residual inter-user interference, which is detrimental for wireless systems. In this paper, two adaptive power allocation algorithms are proposed, which are more robust against CSIT imperfections than conventional techniques. Both techniques employ the mean square error as the objective function. Simulation results show that the proposed techniques obtain a higher performance in terms of sum-rate than conventional approaches.
This paper investigates the secrecy outage probability (SOP), the lower bound of SOP, and the probability of non-zero secrecy capacity (PNZ) of reconfigurable intelligent surface (RIS)-assisted systems from an information-theoretic perspective. In particular, we consider the impacts of eavesdroppers' location uncertainty and the phase adjustment uncertainty, namely imperfect coherent phase shifting and discrete phase shifting on RIS. More specifically, analytical and simulation results are presented to show that (i) the SOP gain due to the increase of the RIS reflecting elements number gradually decreases; and (ii) both phase shifting designs demonstrate the same PNZ secrecy performance, in other words, the random discrete phase shifting outperforms the imperfect coherent phase shifting design with reduced complexity.
We consider the extra degree of freedom offered by the rotation of the reconfigurable intelligent surface (RIS) plane and investigate its potential in improving the performance of RIS-assisted wireless communication systems. By considering radiation pattern modeling at all involved nodes, we first derive the composite channel gain and present a closed-form upper bound for the system ergodic capacity over cascade Rician fading channels. Then, we reconstruct the composite channel gain by taking the rotations at the RIS plane, transmit antenna, and receive antenna into account, and extract the optimal rotation angles after investigating their impacts on the capacity. Moreover, we present a location-dependent expression of the ergodic capacity and investigate the RIS deployment strategy, i.e. the joint rotation adjustment and location selection. Finally, simulation results verify the accuracy of the theoretical analyses and deployment strategy. Although the RIS location has a big impact on the performance, our results showcase that the RIS rotation plays a more important role. In other words, we can obtain a considerable improvement by properly rotating the RIS rather than moving it over a wide area. For instance, we can achieve more than 200\% performance improvement through rotating the RIS by 42.14$^{\circ}$, while an 150\% improvement is obtained by shifting the RIS over 400 meters.
In this paper, we propose to tackle the problem of reducing discrepancies between multiple domains referred to as multi-source domain adaptation and consider it under the target shift assumption: in all domains we aim to solve a classification problem with the same output classes, but with labels' proportions differing across them. We design a method based on optimal transport, a theory that is gaining momentum to tackle adaptation problems in machine learning due to its efficiency in aligning probability distributions. Our method performs multi-source adaptation and target shift correction simultaneously by learning the class probabilities of the unlabeled target sample and the coupling allowing to align two (or more) probability distributions. Experiments on both synthetic and real-world data related to satellite image segmentation task show the superiority of the proposed method over the state-of-the-art.