亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent breakthroughs in text-guided image generation have led to remarkable progress in the field of 3D synthesis from text. By optimizing neural radiance fields (NeRF) directly from text, recent methods are able to produce remarkable results. Yet, these methods are limited in their control of each object's placement or appearance, as they represent the scene as a whole. This can be a major issue in scenarios that require refining or manipulating objects in the scene. To remedy this deficit, we propose a novel GlobalLocal training framework for synthesizing a 3D scene using object proxies. A proxy represents the object's placement in the generated scene and optionally defines its coarse geometry. The key to our approach is to represent each object as an independent NeRF. We alternate between optimizing each NeRF on its own and as part of the full scene. Thus, a complete representation of each object can be learned, while also creating a harmonious scene with style and lighting match. We show that using proxies allows a wide variety of editing options, such as adjusting the placement of each independent object, removing objects from a scene, or refining an object. Our results show that Set-the-Scene offers a powerful solution for scene synthesis and manipulation, filling a crucial gap in controllable text-to-3D synthesis.

相關內容

Rigorous evaluation of the causal effects of semantic features on language model predictions can be hard to achieve for natural language reasoning problems. However, this is such a desirable form of analysis from both an interpretability and model evaluation perspective, that it is valuable to zone in on specific patterns of reasoning with enough structure and regularity to be able to identify and quantify systematic reasoning failures in widely-used models. In this vein, we pick a portion of the NLI task for which an explicit causal diagram can be systematically constructed: in particular, the case where across two sentences (the premise and hypothesis), two related words/terms occur in a shared context. In this work, we apply causal effect estimation strategies to measure the effect of context interventions (whose effect on the entailment label is mediated by the semantic monotonicity characteristic) and interventions on the inserted word-pair (whose effect on the entailment label is mediated by the relation between these words.). Following related work on causal analysis of NLP models in different settings, we adapt the methodology for the NLI task to construct comparative model profiles in terms of robustness to irrelevant changes and sensitivity to impactful changes.

Dynamic scene graphs generated from video clips could help enhance the semantic visual understanding in a wide range of challenging tasks such as environmental perception, autonomous navigation, and task planning of self-driving vehicles and mobile robots. In the process of temporal and spatial modeling during dynamic scene graph generation, it is particularly intractable to learn time-variant relations in dynamic scene graphs among frames. In this paper, we propose a Time-variant Relation-aware TRansformer (TR$^2$), which aims to model the temporal change of relations in dynamic scene graphs. Explicitly, we leverage the difference of text embeddings of prompted sentences about relation labels as the supervision signal for relations. In this way, cross-modality feature guidance is realized for the learning of time-variant relations. Implicitly, we design a relation feature fusion module with a transformer and an additional message token that describes the difference between adjacent frames. Extensive experiments on the Action Genome dataset prove that our TR$^2$ can effectively model the time-variant relations. TR$^2$ significantly outperforms previous state-of-the-art methods under two different settings by 2.1% and 2.6% respectively.

We call on the Document AI (DocAI) community to reevaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins, and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.

The Straightness is a measure designed to characterize a pair of vertices in a spatial graph. It is defined as the ratio of the Euclidean distance to the graph distance between these vertices. It is often used as an average, for instance to describe the accessibility of a single vertex relatively to all the other vertices in the graph, or even to summarize the graph as a whole. In some cases, one needs to process the Straightness between not only vertices, but also any other points constituting the graph of interest. Suppose for instance that our graph represents a road network and we do not want to limit ourselves to crossroad-to-crossroad itineraries, but allow any street number to be a starting point or destination. In this situation, the standard approach consists in: 1) discretizing the graph edges, 2) processing the vertex-to-vertex Straightness considering the additional vertices resulting from this discretization, and 3) performing the appropriate average on the obtained values. However, this discrete approximation can be computationally expensive on large graphs, and its precision has not been clearly assessed. In this article, we adopt a continuous approach to average the Straightness over the edges of spatial graphs. This allows us to derive 5 distinct measures able to characterize precisely the accessibility of the whole graph, as well as individual vertices and edges. Our method is generic and could be applied to other measures designed for spatial graphs. We perform an experimental evaluation of our continuous average Straightness measures, and show how they behave differently from the traditional vertex-to-vertex ones. Moreover, we also study their discrete approximations, and show that our approach is globally less demanding in terms of both processing time and memory usage. Our R source code is publicly available under an open source license.

The Importance Markov chain is a novel algorithm bridging the gap between rejection sampling and importance sampling, moving from one to the other through a tuning parameter. Based on a modified sample of an instrumental Markov chain targeting an instrumental distribution (typically via a MCMC kernel), the Importance Markov chain produces an extended Markov chain where the marginal distribution of the first component converges to the target distribution. For example, when targeting a multimodal distribution, the instrumental distribution can be chosen as a tempered version of the target which allows the algorithm to explore its modes more efficiently. We obtain a Law of Large Numbers and a Central Limit Theorem as well as geometric ergodicity for this extended kernel under mild assumptions on the instrumental kernel. Computationally, the algorithm is easy to implement and preexisting librairies can be used to sample from the instrumental distribution.

Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

北京阿比特科技有限公司