Requirements engineering (RE) literature acknowledges the importance of early stakeholder identification. The sources of requirements are many and also constantly changing as the market and business constantly change. Identifying and consulting all stakeholders on the market is impractical; thus many companies utilize indirect data sources, e.g. documents and representatives of larger groups of stakeholders. However, companies often collect irrelevant data or develop their products based on the sub-optimal information sources that may lead to missing market opportunities. We propose a collaborative method for identification and selection of data sources. The method consists of four steps and aims to build consensus between different perspectives in an organization. We demonstrate the use of the method with three industrial case studies. We have presented and statically validated the method to support prioritization of stakeholders for MDRE. Our results show that the method can support the identification and selection of data sources in three ways: (1) by providing systematic steps to identify and prioritize data sources for RE, (2) by highlighting and resolving discrepancies between different perspectives in an organization, and (3) by analyzing the underlying rationale for using certain data sources.
The specification of requirements and tests are crucial activities in automotive development projects. However, due to the increasing complexity of automotive systems, practitioners fail to specify requirements and tests for distributed and evolving systems with complex interactions when following traditional development processes. To address this research gap, we propose a technique that starts with the early identification of validation concerns from a stakeholder perspective, which we use to systematically design tests that drive a scenario-based modeling and automated analysis of system requirements. We discover that Natural Language Processing (NLP) techniques are suitable to automate the test-case design and hence enable the application of our technique to real-world stakeholder requirements. To ensure complete and consistent requirements and test specifications in a form that is required in automotive development projects, we develop a Model-Based Systems Engineering (MBSE) methodology. This methodology supports system architects and test designers in the collaborative application of our technique and in maintaining a central system model, in order to automatically derive the required specifications. We evaluate our methodology by applying it at KOSTAL (Tier1 supplier) and within student projects as part of the masters program Embedded Systems Engineering. Our study corroborates that our methodology is applicable and improves existing requirements and test specification processes by supporting the integrated and stakeholder-focused modeling of product and validation systems, where the early definition of stakeholder and validation concerns fosters a problem-oriented, iterative and test-driven requirements modeling.
Sensor arrays play a significant role in direction of arrival (DOA) estimation. Specifically, arrays with low redundancy and reduced mutual coupling are desirable. In this paper, we investigate a sensor array configuration that has a restricted sensor spacing and propose a closed-form expression. We also propose several classes of low redundancy (LR) arrays. Interestingly, compared with super nested arrays (SNA) and maximum inter-element spacing constraint (MISC) arrays, one of the proposed arrays has a significant reduction in both redundancy ratio and mutual coupling. Numerical simulations are also conducted to verify the superiority of the proposed array over the known sparse arrays in terms of weight functions, mutual coupling matrices as well and DOA estimation performance.
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose urgent priorities for AI R&D and governance.
For a specific class of sparse Gaussian graphical models, we provide a closed-form solution for the determinant of the covariance matrix. In our framework, the graphical interaction model (i.e., the covariance selection model) is equal to replacement product of $\mathcal{K}_{n}$ and $\mathcal{K}_{n-1}$, where $\mathcal{K}_n$ is the complete graph with $n$ vertices. Our analysis is based on taking the Fourier transform of the local factors of the model, which can be viewed as an application of the Normal Factor Graph Duality Theorem and holographic algorithms. The closed-form expression is obtained by applying the Matrix Determinant Lemma on the transformed graphical model. In this context, we will also define a notion of equivalence between two Gaussian graphical models.
Deep Reinforcement Learning (DRL) has received a lot of attention from the research community in recent years. As the technology moves away from game playing to practical contexts, such as autonomous vehicles and robotics, it is crucial to evaluate the quality of DRL agents. In this paper, we propose a search-based approach to test such agents. Our approach, implemented in a tool called Indago, trains a classifier on failure and non-failure environment (i.e., pass) configurations resulting from the DRL training process. The classifier is used at testing time as a surrogate model for the DRL agent execution in the environment, predicting the extent to which a given environment configuration induces a failure of the DRL agent under test. The failure prediction acts as a fitness function, guiding the generation towards failure environment configurations, while saving computation time by deferring the execution of the DRL agent in the environment to those configurations that are more likely to expose failures. Experimental results show that our search-based approach finds 50% more failures of the DRL agent than state-of-the-art techniques. Moreover, such failures are, on average, 78% more diverse; similarly, the behaviors of the DRL agent induced by failure configurations are 74% more diverse.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.