亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite extensive studies on motion stabilization of bipeds, they still suffer from the lack of disturbance coping capability on slippery surfaces. In this paper, a novel controller for stabilizing a bipedal motion in its sagittal plane is developed with regard to the surface friction limitations. By taking into account the physical limitation of the surface in the stabilization trend, a more advanced level of reliability is achieved that provides higher functionalities such as push recovery on low-friction surfaces and prevents the stabilizer from overreacting. The discrete event-based strategy consists of modifying the step length and time period at the beginning of each footstep in order to reestablish stability necessary conditions while taking into account the surface friction limitation as a constraint to prevent slippage. Adjusting footsteps to prevent slippage in confronting external disturbances is perceived as a novel strategy for keeping stability, quite similar to human reaction. The developed methodology consists of rough closed-form solutions utilizing elementary math operations for obtaining the control inputs, allowing to reach a balance between convergence and computational cost, which is quite suitable for real-time operations even with modest computational hardware. Several numerical simulations, including push recovery and switching between different gates on low-friction surfaces, are performed to demonstrate the effectiveness of the proposed controller. In correlation with human-gait experience, the results also reveal some physical aspects favoring stability and the fact of switching between gaits to reduce the risk of falling in confronting different conditions.

相關內容

Surface 是微(wei)軟公司( )旗下(xia)一系列使(shi)用 Windows 10(早期(qi)為(wei) Windows 8.X)操作系統(tong)的電腦(nao)產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年(nian) 6 月 18 日(ri),初代 Surface Pro/RT 由時任微(wei)軟 CEO 史蒂夫·鮑爾默(mo)發布于在洛杉(shan)磯舉(ju)行的記者(zhe)會,2012 年(nian) 10 月 26 日(ri)上市銷售。

The classical statistical learning theory says that fitting too many parameters leads to overfitting and poor performance. That modern deep neural networks generalize well despite a large number of parameters contradicts this finding and constitutes a major unsolved problem towards explaining the success of deep learning. The implicit regularization induced by stochastic gradient descent (SGD) has been regarded to be important, but its specific principle is still unknown. In this work, we study how the local geometry of the energy landscape around local minima affects the statistical properties of SGD with Gaussian gradient noise. We argue that under reasonable assumptions, the local geometry forces SGD to stay close to a low dimensional subspace and that this induces implicit regularization and results in tighter bounds on the generalization error for deep neural networks. To derive generalization error bounds for neural networks, we first introduce a notion of stagnation sets around the local minima and impose a local essential convexity property of the population risk. Under these conditions, lower bounds for SGD to remain in these stagnation sets are derived. If stagnation occurs, we derive a bound on the generalization error of deep neural networks involving the spectral norms of the weight matrices but not the number of network parameters. Technically, our proofs are based on controlling the change of parameter values in the SGD iterates and local uniform convergence of the empirical loss functions based on the entropy of suitable neighborhoods around local minima. Our work attempts to better connect non-convex optimization and generalization analysis with uniform convergence.

We present a machine learning approach for finding minimal equivalent martingale measures for markets simulators of tradable instruments, e.g. for a spot price and options written on the same underlying. We extend our results to markets with frictions, in which case we find "near-martingale measures" under which the prices of hedging instruments are martingales within their bid/ask spread. By removing the drift, we are then able to learn using Deep Hedging a "clean" hedge for an exotic payoff which is not polluted by the trading strategy trying to make money from statistical arbitrage opportunities. We correspondingly highlight the robustness of this hedge vs estimation error of the original market simulator. We discuss applications to two market simulators.

Capturing the composition patterns of relations is a vital task in knowledge graph completion. It also serves as a fundamental step towards multi-hop reasoning over learned knowledge. Previously, several rotation-based translational methods have been developed to model composite relations using the product of a series of complex-valued diagonal matrices. However, these methods tend to make several oversimplified assumptions on the composite relations, e.g., forcing them to be commutative, independent from entities and lacking semantic hierarchy. To systematically tackle these problems, we have developed a novel knowledge graph embedding method, named DensE, to provide an improved modeling scheme for the complex composition patterns of relations. In particular, our method decomposes each relation into an SO(3) group-based rotation operator and a scaling operator in the three dimensional (3-D) Euclidean space. This design principle leads to several advantages of our method: (1) For composite relations, the corresponding diagonal relation matrices can be non-commutative, reflecting a predominant scenario in real world applications; (2) Our model preserves the natural interaction between relational operations and entity embeddings; (3) The scaling operation provides the modeling power for the intrinsic semantic hierarchical structure of entities; (4) The enhanced expressiveness of DensE is achieved with high computational efficiency in terms of both parameter size and training time; and (5) Modeling entities in Euclidean space instead of quaternion space keeps the direct geometrical interpretations of relational patterns. Experimental results on multiple benchmark knowledge graphs show that DensE outperforms the current state-of-the-art models for missing link prediction, especially on composite relations.

Novel Magnetic Resonance (MR) imaging modalities can quantify hemodynamics but require long acquisition times, precluding its widespread use for early diagnosis of cardiovascular disease. To reduce the acquisition times, reconstruction methods from undersampled measurements are routinely used, that leverage representations designed to increase image compressibility. Reconstructed anatomical and hemodynamic images may present visual artifacts. Although some of these artifact are essentially reconstruction errors, and thus a consequence of undersampling, others may be due to measurement noise or the random choice of the sampled frequencies. Said otherwise, a reconstructed image becomes a random variable, and both its bias and its covariance can lead to visual artifacts; the latter leads to spatial correlations that may be misconstrued for visual information. Although the nature of the former has been studied in the literature, the latter has not received as much attention. In this study, we investigate the theoretical properties of the random perturbations arising from the reconstruction process, and perform a number of numerical experiments on simulated and MR aortic flow. Our results show that the correlation length remains limited to two to three pixels when a Gaussian undersampling pattern is combined with recovery algorithms based on $\ell_1$-norm minimization. However, the correlation length may increase significantly for other undersampling patterns, higher undersampling factors (i.e., 8x or 16x compression), and different reconstruction methods.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

Tensor factorization has become an increasingly popular approach to knowledge graph completion(KGC), which is the task of automatically predicting missing facts in a knowledge graph. However, even with a simple model like CANDECOMP/PARAFAC(CP) tensor decomposition, KGC on existing knowledge graphs is impractical in resource-limited environments, as a large amount of memory is required to store parameters represented as 32-bit or 64-bit floating point numbers. This limitation is expected to become more stringent as existing knowledge graphs, which are already huge, keep steadily growing in scale. To reduce the memory requirement, we present a method for binarizing the parameters of the CP tensor decomposition by introducing a quantization function to the optimization problem. This method replaces floating point-valued parameters with binary ones after training, which drastically reduces the model size at run time. We investigate the trade-off between the quality and size of tensor factorization models for several KGC benchmark datasets. In our experiments, the proposed method successfully reduced the model size by more than an order of magnitude while maintaining the task performance. Moreover, a fast score computation technique can be developed with bitwise operations.

The piecewise constant Mumford-Shah (PCMS) model and the Rudin-Osher-Fatemi (ROF) model are two of the most famous variational models in image segmentation and image restoration, respectively. They have ubiquitous applications in image processing. In this paper, we explore the linkage between these two important models. We prove that for two-phase segmentation problem the optimal solution of the PCMS model can be obtained by thresholding the minimizer of the ROF model. This linkage is still valid for multiphase segmentation under mild assumptions. Thus it opens a new segmentation paradigm: image segmentation can be done via image restoration plus thresholding. This new paradigm, which circumvents the innate non-convex property of the PCMS model, therefore improves the segmentation performance in both efficiency (much faster than state-of-the-art methods based on PCMS model, particularly when the phase number is high) and effectiveness (producing segmentation results with better quality) due to the flexibility of the ROF model in tackling degraded images, such as noisy images, blurry images or images with information loss. As a by-product of the new paradigm, we derive a novel segmentation method, coined thresholded-ROF (T-ROF) method, to illustrate the virtue of manipulating image segmentation through image restoration techniques. The convergence of the T-ROF method under certain conditions is proved, and elaborate experimental results and comparisons are presented.

Various 3D reconstruction methods have enabled civil engineers to detect damage on a road surface. To achieve the millimetre accuracy required for road condition assessment, a disparity map with subpixel resolution needs to be used. However, none of the existing stereo matching algorithms are specially suitable for the reconstruction of the road surface. Hence in this paper, we propose a novel dense subpixel disparity estimation algorithm with high computational efficiency and robustness. This is achieved by first transforming the perspective view of the target frame into the reference view, which not only increases the accuracy of the block matching for the road surface but also improves the processing speed. The disparities are then estimated iteratively using our previously published algorithm where the search range is propagated from three estimated neighbouring disparities. Since the search range is obtained from the previous iteration, errors may occur when the propagated search range is not sufficient. Therefore, a correlation maxima verification is performed to rectify this issue, and the subpixel resolution is achieved by conducting a parabola interpolation enhancement. Furthermore, a novel disparity global refinement approach developed from the Markov Random Fields and Fast Bilateral Stereo is introduced to further improve the accuracy of the estimated disparity map, where disparities are updated iteratively by minimising the energy function that is related to their interpolated correlation polynomials. The algorithm is implemented in C language with a near real-time performance. The experimental results illustrate that the absolute error of the reconstruction varies from 0.1 mm to 3 mm.

The per-pixel cross-entropy loss (CEL) has been widely used in structured output prediction tasks as a spatial extension of generic image classification. However, its i.i.d. assumption neglects the structural regularity present in natural images. Various attempts have been made to incorporate structural reasoning mostly through structure priors in a cooperative way where co-occuring patterns are encouraged. We, on the other hand, approach this problem from an opposing angle and propose a new framework for training such structured prediction networks via an adversarial process, in which we train a structure analyzer that provides the supervisory signals, the adversarial structure matching loss (ASML). The structure analyzer is trained to maximize ASML, or to exaggerate recurring structural mistakes usually among co-occurring patterns. On the contrary, the structured output prediction network is trained to reduce those mistakes and is thus enabled to distinguish fine-grained structures. As a result, training structured output prediction networks using ASML reduces contextual confusion among objects and improves boundary localization. We demonstrate that ASML outperforms its counterpart CEL especially in context and boundary aspects on figure-ground segmentation and semantic segmentation tasks with various base architectures, such as FCN, U-Net, DeepLab, and PSPNet.

Limited capture range, and the requirement to provide high quality initialization for optimization-based 2D/3D image registration methods, can significantly degrade the performance of 3D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, which contain significant subject motion such as fetal in-utero imaging, complicate the 3D image and volume reconstruction process. In this paper we present a learning based image registration method capable of predicting 3D rigid transformations of arbitrarily oriented 2D image slices, with respect to a learned canonical atlas co-ordinate system. Only image slice intensity information is used to perform registration and canonical alignment, no spatial transform initialization is required. To find image transformations we utilize a Convolutional Neural Network (CNN) architecture to learn the regression function capable of mapping 2D image slices to a 3D canonical atlas space. We extensively evaluate the effectiveness of our approach quantitatively on simulated Magnetic Resonance Imaging (MRI), fetal brain imagery with synthetic motion and further demonstrate qualitative results on real fetal MRI data where our method is integrated into a full reconstruction and motion compensation pipeline. Our learning based registration achieves an average spatial prediction error of 7 mm on simulated data and produces qualitatively improved reconstructions for heavily moving fetuses with gestational ages of approximately 20 weeks. Our model provides a general and computationally efficient solution to the 2D/3D registration initialization problem and is suitable for real-time scenarios.

北京阿比特科技有限公司