Recently, there has been an increased interest in the practical problem of learning multiple dense scene understanding tasks from partially annotated data, where each training sample is only labeled for a subset of the tasks. The missing of task labels in training leads to low-quality and noisy predictions, as can be observed from state-of-the-art methods. To tackle this issue, we reformulate the partially-labeled multi-task dense prediction as a pixel-level denoising problem, and propose a novel multi-task denoising diffusion framework coined as DiffusionMTL. It designs a joint diffusion and denoising paradigm to model a potential noisy distribution in the task prediction or feature maps and generate rectified outputs for different tasks. To exploit multi-task consistency in denoising, we further introduce a Multi-Task Conditioning strategy, which can implicitly utilize the complementary nature of the tasks to help learn the unlabeled tasks, leading to an improvement in the denoising performance of the different tasks. Extensive quantitative and qualitative experiments demonstrate that the proposed multi-task denoising diffusion model can significantly improve multi-task prediction maps, and outperform the state-of-the-art methods on three challenging multi-task benchmarks, under two different partial-labeling evaluation settings. The code is available at //prismformore.github.io/diffusionmtl/.
The integration of visual cues has revitalized the performance of the target speech extraction task, elevating it to the forefront of the field. Nevertheless, this multi-modal learning paradigm often encounters the challenge of modality imbalance. In audio-visual target speech extraction tasks, the audio modality tends to dominate, potentially overshadowing the importance of visual guidance. To tackle this issue, we propose AVSepChain, drawing inspiration from the speech chain concept. Our approach partitions the audio-visual target speech extraction task into two stages: speech perception and speech production. In the speech perception stage, audio serves as the dominant modality, while visual information acts as the conditional modality. Conversely, in the speech production stage, the roles are reversed. This transformation of modality status aims to alleviate the problem of modality imbalance. Additionally, we introduce a contrastive semantic matching loss to ensure that the semantic information conveyed by the generated speech aligns with the semantic information conveyed by lip movements during the speech production stage. Through extensive experiments conducted on multiple benchmark datasets for audio-visual target speech extraction, we showcase the superior performance achieved by our proposed method.
This review addresses the problem of learning abstract representations of the measurement data in the context of Deep Reinforcement Learning (DRL). While the data are often ambiguous, high-dimensional, and complex to interpret, many dynamical systems can be effectively described by a low-dimensional set of state variables. Discovering these state variables from the data is a crucial aspect for (i) improving the data efficiency, robustness, and generalization of DRL methods, (ii) tackling the curse of dimensionality, and (iii) bringing interpretability and insights into black-box DRL. This review provides a comprehensive and complete overview of unsupervised representation learning in DRL by describing the main Deep Learning tools used for learning representations of the world, providing a systematic view of the method and principles, summarizing applications, benchmarks and evaluation strategies, and discussing open challenges and future directions.
Graphics Processing Units (GPUs) have become the leading hardware accelerator for deep learning applications and are used widely in training and inference of transformers; transformers have achieved state-of-the-art performance in many areas of machine learning and are especially used in most modern Large Language Models (LLMs). However, GPUs require large amounts of energy, which poses environmental concerns, demands high operational costs, and causes GPUs to be unsuitable for edge computing. We develop an accelerator for transformers, namely, Llama 2, an open-source state-of-the-art LLM, using high level synthesis (HLS) on Field Programmable Gate Arrays (FPGAs). HLS allows us to rapidly prototype FPGA designs without writing code at the register-transfer level (RTL). We name our method HLSTransform, and the FPGA designs we synthesize with HLS achieve up to a 12.75x reduction and 8.25x reduction in energy used per token on the Xilinx Virtex UltraScale+ VU9P FPGA compared to an Intel Xeon Broadwell E5-2686 v4 CPU and NVIDIA RTX 3090 GPU respectively, while increasing inference speeds by up to 2.46x compared to CPU and maintaining 0.53x the speed of an RTX 3090 GPU despite the GPU's 4 times higher base clock rate. With the lack of existing open-source FPGA accelerators for transformers, we open-source our code and document our steps for synthesis. We hope this work will serve as a step in democratizing the use of FPGAs in transformer inference and inspire research into energy-efficient inference methods as a whole. The code can be found on //github.com/HLSTransform/submission.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.