亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning is vulnerable to poisoning attacks in which malicious clients poison the global model via sending malicious model updates to the server. Existing defenses focus on preventing a small number of malicious clients from poisoning the global model via robust federated learning methods and detecting malicious clients when there are a large number of them. However, it is still an open challenge how to recover the global model from poisoning attacks after the malicious clients are detected. A naive solution is to remove the detected malicious clients and train a new global model from scratch, which incurs large cost that may be intolerable for resource-constrained clients such as smartphones and IoT devices. In this work, we propose FedRecover, which can recover an accurate global model from poisoning attacks with small cost for the clients. Our key idea is that the server estimates the clients' model updates instead of asking the clients to compute and communicate them during the recovery process. In particular, the server stores the global models and clients' model updates in each round, when training the poisoned global model. During the recovery process, the server estimates a client's model update in each round using its stored historical information. Moreover, we further optimize FedRecover to recover a more accurate global model using warm-up, periodic correction, abnormality fixing, and final tuning strategies, in which the server asks the clients to compute and communicate their exact model updates. Theoretically, we show that the global model recovered by FedRecover is close to or the same as that recovered by train-from-scratch under some assumptions. Empirically, our evaluation on four datasets, three federated learning methods, as well as untargeted and targeted poisoning attacks (e.g., backdoor attacks) shows that FedRecover is both accurate and efficient.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Extensibility · CASES · 白盒 ·
2022 年 12 月 2 日

Deep neural networks have empowered accurate device-free human activity recognition, which has wide applications. Deep models can extract robust features from various sensors and generalize well even in challenging situations such as data-insufficient cases. However, these systems could be vulnerable to input perturbations, i.e. adversarial attacks. We empirically demonstrate that both black-box Gaussian attacks and modern adversarial white-box attacks can render their accuracies to plummet. In this paper, we firstly point out that such phenomenon can bring severe safety hazards to device-free sensing systems, and then propose a novel learning framework, SecureSense, to defend common attacks. SecureSense aims to achieve consistent predictions regardless of whether there exists an attack on its input or not, alleviating the negative effect of distribution perturbation caused by adversarial attacks. Extensive experiments demonstrate that our proposed method can significantly enhance the model robustness of existing deep models, overcoming possible attacks. The results validate that our method works well on wireless human activity recognition and person identification systems. To the best of our knowledge, this is the first work to investigate adversarial attacks and further develop a novel defense framework for wireless human activity recognition in mobile computing research.

Federated Learning is a distributed machine learning framework designed for data privacy preservation i.e., local data remain private throughout the entire training and testing procedure. Federated Learning is gaining popularity because it allows one to use machine learning techniques while preserving privacy. However, it inherits the vulnerabilities and susceptibilities raised in deep learning techniques. For instance, Federated Learning is particularly vulnerable to data poisoning attacks that may deteriorate its performance and integrity due to its distributed nature and inaccessibility to the raw data. In addition, it is extremely difficult to correctly identify malicious clients due to the non-Independently and/or Identically Distributed (non-IID) data. The real-world data can be complex and diverse, making them hardly distinguishable from the malicious data without direct access to the raw data. Prior research has focused on detecting malicious clients while treating only the clients having IID data as benign. In this study, we propose a method that detects and classifies anomalous clients from benign clients when benign ones have non-IID data. Our proposed method leverages feature dimension reduction, dynamic clustering, and cosine similarity-based clipping. The experimental results validates that our proposed method not only classifies the malicious clients but also alleviates their negative influences from the entire procedure. Our findings may be used in future studies to effectively eliminate anomalous clients when building a model with diverse data.

Vertical federated learning is a trending solution for multi-party collaboration in training machine learning models. Industrial frameworks adopt secure multi-party computation methods such as homomorphic encryption to guarantee data security and privacy. However, a line of work has revealed that there are still leakage risks in VFL. The leakage is caused by the correlation between the intermediate representations and the raw data. Due to the powerful approximation ability of deep neural networks, an adversary can capture the correlation precisely and reconstruct the data. To deal with the threat of the data reconstruction attack, we propose a hashing-based VFL framework, called \textit{HashVFL}, to cut off the reversibility directly. The one-way nature of hashing allows our framework to block all attempts to recover data from hash codes. However, integrating hashing also brings some challenges, e.g., the loss of information. This paper proposes and addresses three challenges to integrating hashing: learnability, bit balance, and consistency. Experimental results demonstrate \textit{HashVFL}'s efficiency in keeping the main task's performance and defending against data reconstruction attacks. Furthermore, we also analyze its potential value in detecting abnormal inputs. In addition, we conduct extensive experiments to prove \textit{HashVFL}'s generalization in various settings. In summary, \textit{HashVFL} provides a new perspective on protecting multi-party's data security and privacy in VFL. We hope our study can attract more researchers to expand the application domains of \textit{HashVFL}.

Federated learning (FL) collaboratively trains a shared global model depending on multiple local clients, while keeping the training data decentralized in order to preserve data privacy. However, standard FL methods ignore the noisy client issue, which may harm the overall performance of the shared model. We first investigate critical issue caused by noisy clients in FL and quantify the negative impact of the noisy clients in terms of the representations learned by different layers. We have the following two key observations: (1) the noisy clients can severely impact the convergence and performance of the global model in FL, and (2) the noisy clients can induce greater bias in the deeper layers than the former layers of the global model. Based on the above observations, we propose Fed-NCL, a framework that conducts robust federated learning with noisy clients. Specifically, Fed-NCL first identifies the noisy clients through well estimating the data quality and model divergence. Then robust layer-wise aggregation is proposed to adaptively aggregate the local models of each client to deal with the data heterogeneity caused by the noisy clients. We further perform the label correction on the noisy clients to improve the generalization of the global model. Experimental results on various datasets demonstrate that our algorithm boosts the performances of different state-of-the-art systems with noisy clients. Our code is available on //github.com/TKH666/Fed-NCL

Clustering has been extensively studied in centralized settings, but relatively unexplored in federated ones that data are distributed among multiple clients and can only be kept local at the clients. The necessity to invest more resources in improving federated clustering methods is twofold: 1) The performance of supervised federated learning models can benefit from clustering. 2) It is non-trivial to extend centralized ones to perform federated clustering tasks. In centralized settings, various deep clustering methods that perform dimensionality reduction and clustering jointly have achieved great success. To obtain high-quality cluster information, it is natural but non-trivial to extend these methods to federated settings. For this purpose, we propose a simple but effective federated deep clustering method. It requires only one communication round between the central server and clients, can run asynchronously, and can handle device failures. Moreover, although most studies have highlighted adverse effects of the non-independent and identically distributed (non-IID) data across clients, experimental results indicate that the proposed method can significantly benefit from this scenario.

With the booming deployment of Internet of Things, health monitoring applications have gradually prospered. Within the recent COVID-19 pandemic situation, interest in permanent remote health monitoring solutions has raised, targeting to reduce contact and preserve the limited medical resources. Among the technological methods to realize efficient remote health monitoring, federated learning (FL) has drawn particular attention due to its robustness in preserving data privacy. However, FL can yield to high communication costs, due to frequent transmissions between the FL server and clients. To tackle this problem, we propose in this paper a communication-efficient federated learning (CEFL) framework that involves clients clustering and transfer learning. First, we propose to group clients through the calculation of similarity factors, based on the neural networks characteristics. Then, a representative client in each cluster is selected to be the leader of the cluster. Differently from the conventional FL, our method performs FL training only among the cluster leaders. Subsequently, transfer learning is adopted by the leader to update its cluster members with the trained FL model. Finally, each member fine-tunes the received model with its own data. To further reduce the communication costs, we opt for a partial-layer FL aggregation approach. This method suggests partially updating the neural network model rather than fully. Through experiments, we show that CEFL can save up to to 98.45% in communication costs while conceding less than 3% in accuracy loss, when compared to the conventional FL. Finally, CEFL demonstrates a high accuracy for clients with small or unbalanced datasets.

Federated learning (FL) has emerged as a solution to deal with the risk of privacy leaks in machine learning training. This approach allows a variety of mobile devices to collaboratively train a machine learning model without sharing the raw on-device training data with the cloud. However, efficient edge deployment of FL is challenging because of the system/data heterogeneity and runtime variance. This paper optimizes the energy-efficiency of FL use cases while guaranteeing model convergence, by accounting for the aforementioned challenges. We propose FedGPO based on a reinforcement learning, which learns how to identify optimal global parameters (B, E, K) for each FL aggregation round adapting to the system/data heterogeneity and stochastic runtime variance. In our experiments, FedGPO improves the model convergence time by 2.4 times, and achieves 3.6 times higher energy efficiency over the baseline settings, respectively.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司