Demosaicing and denoising of RAW images are crucial steps in the processing pipeline of modern digital cameras. As only a third of the color information required to produce a digital image is captured by the camera sensor, the process of demosaicing is inherently ill-posed. The presence of noise further exacerbates this problem. Performing these two steps sequentially may distort the content of the captured RAW images and accumulate errors from one step to another. Recent deep neural-network-based approaches have shown the effectiveness of joint demosaicing and denoising to mitigate such challenges. However, these methods typically require a large number of training samples and do not generalize well to different types and intensities of noise. In this paper, we propose a novel joint demosaicing and denoising method, dubbed JDD-DoubleDIP, which operates directly on a single RAW image without requiring any training data. We validate the effectiveness of our method on two popular datasets -- Kodak and McMaster -- with various noises and noise intensities. The experimental results show that our method consistently outperforms other compared methods in terms of PSNR, SSIM, and qualitative visual perception.
Video inpainting is the task of filling a desired region in a video in a visually convincing manner. It is a very challenging task due to the high dimensionality of the signal and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling complex data distributions, including images and videos. Diffusion models remain nonetheless very expensive to train and perform inference with, which strongly restrict their application to video. We show that in the case of video inpainting, thanks to the highly auto-similar nature of videos, the training of a diffusion model can be restricted to the video to inpaint and still produce very satisfying results. This leads us to adopt an internal learning approch, which also allows for a greatly reduced network size. We call our approach "Infusion": an internal learning algorithm for video inpainting through diffusion. Due to our frugal network, we are able to propose the first video inpainting approach based purely on diffusion. Other methods require supporting elements such as optical flow estimation, which limits their performance in the case of dynamic textures for example. We introduce a new method for efficient training and inference of diffusion models in the context of internal learning. We split the diffusion process into different learning intervals which greatly simplifies the learning steps. We show qualititative and quantitative results, demonstrating that our method reaches state-of-the-art performance, in particular in the case of dynamic backgrounds and textures.
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models. The approach relies on the transform coding paradigm, where an image is mapped into a latent space for entropy coding and, from there, mapped back to the data space for reconstruction. In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model. Our approach thus introduces an additional "content" latent variable on which the reverse diffusion process is conditioned and uses this variable to store information about the image. The remaining "texture" variables characterizing the diffusion process are synthesized at decoding time. We show that the model's performance can be tuned toward perceptual metrics of interest. Our extensive experiments involving multiple datasets and image quality assessment metrics show that our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics. Furthermore, training the diffusion with X-parameterization enables high-quality reconstructions in only a handful of decoding steps, greatly affecting the model's practicality.
Computer graphics images (CGIs) are artificially generated by means of computer programs and are widely perceived under various scenarios, such as games, streaming media, etc. In practice, the quality of CGIs consistently suffers from poor rendering during production, inevitable compression artifacts during the transmission of multimedia applications, and low aesthetic quality resulting from poor composition and design. However, few works have been dedicated to dealing with the challenge of computer graphics image quality assessment (CGIQA). Most image quality assessment (IQA) metrics are developed for natural scene images (NSIs) and validated on databases consisting of NSIs with synthetic distortions, which are not suitable for in-the-wild CGIs. To bridge the gap between evaluating the quality of NSIs and CGIs, we construct a large-scale in-the-wild CGIQA database consisting of 6,000 CGIs (CGIQA-6k) and carry out the subjective experiment in a well-controlled laboratory environment to obtain the accurate perceptual ratings of the CGIs. Then, we propose an effective deep learning-based no-reference (NR) IQA model by utilizing both distortion and aesthetic quality representation. Experimental results show that the proposed method outperforms all other state-of-the-art NR IQA methods on the constructed CGIQA-6k database and other CGIQA-related databases. The database is released at //github.com/zzc-1998/CGIQA6K.
Text-to-video retrieval (TVR) aims to find the most relevant video in a large video gallery given a query text. The intricate and abundant context of the video challenges the performance and efficiency of TVR. To handle the serialized video contexts, existing methods typically select a subset of frames within a video to represent the video content for TVR. How to select the most representative frames is a crucial issue, whereby the selected frames are required to not only retain the semantic information of the video but also promote retrieval efficiency by excluding temporally redundant frames. In this paper, we make the first empirical study of frame selection for TVR. We systemically classify existing frame selection methods into text-free and text-guided ones, under which we detailedly analyze six different frame selections in terms of effectiveness and efficiency. Among them, two frame selections are first developed in this paper. According to the comprehensive analysis on multiple TVR benchmarks, we empirically conclude that the TVR with proper frame selections can significantly improve the retrieval efficiency without sacrificing the retrieval performance.
Infrared and visible image fusion aims to extract complementary features to synthesize a single fused image. Many methods employ convolutional neural networks (CNNs) to extract local features due to its translation invariance and locality. However, CNNs fail to consider the image's non-local self-similarity (NLss), though it can expand the receptive field by pooling operations, it still inevitably leads to information loss. In addition, the transformer structure extracts long-range dependence by considering the correlativity among all image patches, leading to information redundancy of such transformer-based methods. However, graph representation is more flexible than grid (CNN) or sequence (transformer structure) representation to address irregular objects, and graph can also construct the relationships among the spatially repeatable details or texture with far-space distance. Therefore, to address the above issues, it is significant to convert images into the graph space and thus adopt graph convolutional networks (GCNs) to extract NLss. This is because the graph can provide a fine structure to aggregate features and propagate information across the nearest vertices without introducing redundant information. Concretely, we implement a cascaded NLss extraction pattern to extract NLss of intra- and inter-modal by exploring interactions of different image pixels in intra- and inter-image positional distance. We commence by preforming GCNs on each intra-modal to aggregate features and propagate information to extract independent intra-modal NLss. Then, GCNs are performed on the concatenate intra-modal NLss features of infrared and visible images, which can explore the cross-domain NLss of inter-modal to reconstruct the fused image. Ablation studies and extensive experiments illustrates the effectiveness and superiority of the proposed method on three datasets.
Capturing screen contents by smartphone cameras has become a common way for information sharing. However, these images and videos are often degraded by moir\'e patterns, which are caused by frequency aliasing between the camera filter array and digital display grids. We observe that the moir\'e patterns in raw domain is simpler than those in sRGB domain, and the moir\'e patterns in raw color channels have different properties. Therefore, we propose an image and video demoir\'eing network tailored for raw inputs. We introduce a color-separated feature branch, and it is fused with the traditional feature-mixed branch via channel and spatial modulations. Specifically, the channel modulation utilizes modulated color-separated features to enhance the color-mixed features. The spatial modulation utilizes the feature with large receptive field to modulate the feature with small receptive field. In addition, we build the first well-aligned raw video demoir\'eing (RawVDemoir\'e) dataset and propose an efficient temporal alignment method by inserting alternating patterns. Experiments demonstrate that our method achieves state-of-the-art performance for both image and video demori\'eing. We have released the code and dataset in //github.com/tju-chengyijia/VD_raw.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal