E-commerce customers frequently seek detailed product information for purchase decisions, commonly contacting sellers directly with extended queries. This manual response requirement imposes additional costs and disrupts buyer's shopping experience with response time fluctuations ranging from hours to days. We seek to automate buyer inquiries to sellers in a leading e-commerce store using a domain-specific federated Question Answering (QA) system. The main challenge is adapting current QA systems, designed for single questions, to address detailed customer queries. We address this with a low-latency, sequence-to-sequence approach, MESSAGE-TO-QUESTION ( M2Q ). It reformulates buyer messages into succinct questions by identifying and extracting the most salient information from a message. Evaluation against baselines shows that M2Q yields relative increases of 757% in question understanding, and 1,746% in answering rate from the federated QA system. Live deployment shows that automatic answering saves sellers from manually responding to millions of messages per year, and also accelerates customer purchase decisions by eliminating the need for buyers to wait for a reply
Successful collaboration involves sharing information. However, parties may disagree on how the information they need to share should be used. We argue that many of these concerns reduce to 'the copy problem': once a bit of information is copied and shared, the sender can no longer control how the recipient uses it. From the perspective of each collaborator, this presents a dilemma that can inhibit collaboration. The copy problem is often amplified by three related problems which we term the bundling, edit, and recursive enforcement problems. We find that while the copy problem is not solvable, aspects of these amplifying problems have been addressed in a variety of disconnected fields. We observe that combining these efforts could improve the governability of information flows and thereby incentivise collaboration. We propose a five-part framework which groups these efforts into specific capabilities and offers a foundation for their integration into an overarching vision we call "structured transparency". We conclude by surveying an array of use-cases that illustrate the structured transparency principles and their related capabilities.
Self-admitted technical debt (SATD) refers to a form of technical debt in which developers explicitly acknowledge and document the existence of technical shortcuts, workarounds, or temporary solutions within the codebase. Over recent years, researchers have manually labeled datasets derived from various software development artifacts: source code comments, messages from the issue tracker and pull request sections, and commit messages. These datasets are designed for training, evaluation, performance validation, and improvement of machine learning and deep learning models to accurately identify SATD instances. However, class imbalance poses a serious challenge across all the existing datasets, particularly when researchers are interested in categorizing the specific types of SATD. In order to address the scarcity of labeled data for SATD \textit{identification} (i.e., whether an instance is SATD or not) and \textit{categorization} (i.e., which type of SATD is being classified) in existing datasets, we share the \textit{SATDAUG} dataset, an augmented version of existing SATD datasets, including source code comments, issue tracker, pull requests, and commit messages. These augmented datasets have been balanced in relation to the available artifacts and provide a much richer source of labeled data for training machine learning or deep learning models.
Multi-view depth estimation has achieved impressive performance over various benchmarks. However, almost all current multi-view systems rely on given ideal camera poses, which are unavailable in many real-world scenarios, such as autonomous driving. In this work, we propose a new robustness benchmark to evaluate the depth estimation system under various noisy pose settings. Surprisingly, we find current multi-view depth estimation methods or single-view and multi-view fusion methods will fail when given noisy pose settings. To address this challenge, we propose a single-view and multi-view fused depth estimation system, which adaptively integrates high-confident multi-view and single-view results for both robust and accurate depth estimations. The adaptive fusion module performs fusion by dynamically selecting high-confidence regions between two branches based on a wrapping confidence map. Thus, the system tends to choose the more reliable branch when facing textureless scenes, inaccurate calibration, dynamic objects, and other degradation or challenging conditions. Our method outperforms state-of-the-art multi-view and fusion methods under robustness testing. Furthermore, we achieve state-of-the-art performance on challenging benchmarks (KITTI and DDAD) when given accurate pose estimations. Project website: //github.com/Junda24/AFNet/.
Neural compression has brought tremendous progress in designing lossy compressors with good rate-distortion (RD) performance at low complexity. Thus far, neural compression design involves transforming the source to a latent vector, which is then rounded to integers and entropy coded. While this approach has been shown to be optimal in a one-shot sense on certain sources, we show that it is highly sub-optimal on i.i.d. sequences, and in fact always recovers scalar quantization of the original source sequence. We demonstrate that the sub-optimality is due to the choice of quantization scheme in the latent space, and not the transform design. By employing lattice quantization instead of scalar quantization in the latent space, we demonstrate that Lattice Transform Coding (LTC) is able to recover optimal vector quantization at various dimensions and approach the asymptotically-achievable rate-distortion function at reasonable complexity. On general vector sources, LTC improves upon standard neural compressors in one-shot coding performance. LTC also enables neural compressors that perform block coding on i.i.d. vector sources, which yields coding gain over optimal one-shot coding.
Compared to business-to-consumer (B2C) e-commerce systems, consumer-to-consumer (C2C) e-commerce platforms usually encounter the limited-stock problem, that is, a product can only be sold one time in a C2C system. This poses several unique challenges for click-through rate (CTR) prediction. Due to limited user interactions for each product (i.e. item), the corresponding item embedding in the CTR model may not easily converge. This makes the conventional sequence modeling based approaches cannot effectively utilize user history information since historical user behaviors contain a mixture of items with different volume of stocks. Particularly, the attention mechanism in a sequence model tends to assign higher score to products with more accumulated user interactions, making limited-stock products being ignored and contribute less to the final output. To this end, we propose the Meta-Split Network (MSNet) to split user history sequence regarding to the volume of stock for each product, and adopt differentiated modeling approaches for different sequences. As for the limited-stock products, a meta-learning approach is applied to address the problem of inconvergence, which is achieved by designing meta scaling and shifting networks with ID and side information. In addition, traditional approach can hardly update item embedding once the product is consumed. Thereby, we propose an auxiliary loss that makes the parameters updatable even when the product is no longer in distribution. To the best of our knowledge, this is the first solution addressing the recommendation of limited-stock product. Experimental results on the production dataset and online A/B testing demonstrate the effectiveness of our proposed method.
Advances in Tiny Machine Learning (TinyML) have bolstered the creation of smart industry solutions, including smart agriculture, healthcare and smart cities. Whilst related research contributes to enabling TinyML solutions on constrained hardware, there is a need to amplify real-world applications by optimising energy consumption in battery-powered systems. The work presented extends and contributes to TinyML research by optimising battery-powered image-based anomaly detection Internet of Things (IoT) systems. Whilst previous work in this area has yielded the capabilities of on-device inferencing and training, there has yet to be an investigation into optimising the management of such capabilities using machine learning approaches, such as Reinforcement Learning (RL), to improve the deployment battery life of such systems. Using modelled simulations, the battery life effects of an RL algorithm are benchmarked against static and dynamic optimisation approaches, with the foundation laid for a hardware benchmark to follow. It is shown that using RL within a TinyML-enabled IoT system to optimise the system operations, including cloud anomaly processing and on-device training, yields an improved battery life of 22.86% and 10.86% compared to static and dynamic optimisation approaches respectively. The proposed solution can be deployed to resource-constrained hardware, given its low memory footprint of 800 B, which could be further reduced. This further facilitates the real-world deployment of such systems, including key sectors such as smart agriculture.
Given the long textual product information and the product image, Multi-modal Product Summarization (MPS) aims to increase customers' desire to purchase by highlighting product characteristics with a short textual summary. Existing MPS methods can produce promising results. Nevertheless, they still 1) lack end-to-end product summarization, 2) lack multi-grained multi-modal modeling, and 3) lack multi-modal attribute modeling. To improve MPS, we propose an end-to-end multi-grained multi-modal attribute-aware product summarization method (MMAPS) for generating high-quality product summaries in e-commerce. MMAPS jointly models product attributes and generates product summaries. We design several multi-grained multi-modal tasks to better guide the multi-modal learning of MMAPS. Furthermore, we model product attributes based on both text and image modalities so that multi-modal product characteristics can be manifested in the generated summaries. Extensive experiments on a real large-scale Chinese e-commence dataset demonstrate that our model outperforms state-of-the-art product summarization methods w.r.t. several summarization metrics. Our code is publicly available at: //github.com/KDEGroup/MMAPS.
Chat-based large language models have the opportunity to empower individuals lacking high-quality healthcare access to receive personalized information across a variety of topics. However, users may ask underspecified questions that require additional context for a model to correctly answer. We study how large language model biases are exhibited through these contextual questions in the healthcare domain. To accomplish this, we curate a dataset of sexual and reproductive healthcare questions that are dependent on age, sex, and location attributes. We compare models' outputs with and without demographic context to determine group alignment among our contextual questions. Our experiments reveal biases in each of these attributes, where young adult female users are favored.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.