亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the generalization error of statistical learning models in a Federated Learning (FL) setting. Specifically, there are $K$ devices or clients, each holding an independent own dataset of size $n$. Individual models, learned locally via Stochastic Gradient Descent, are aggregated (averaged) by a central server into a global model and then sent back to the devices. We consider multiple (say $R \in \mathbb N^*$) rounds of model aggregation and study the effect of $R$ on the generalization error of the final aggregated model. We establish an upper bound on the generalization error that accounts explicitly for the effect of $R$ (in addition to the number of participating devices $K$ and dataset size $n$). It is observed that, for fixed $(n, K)$, the bound increases with $R$, suggesting that the generalization of such learning algorithms is negatively affected by more frequent communication with the parameter server. Combined with the fact that the empirical risk, however, generally decreases for larger values of $R$, this indicates that $R$ might be a parameter to optimize to reduce the population risk of FL algorithms. The results of this paper, which extend straightforwardly to the heterogeneous data setting, are also illustrated through numerical examples.

相關內容

學習方法的泛化能力(Generalization Error)是由該方法學習到的模型對未知數據的預測能力,是學習方法本質上重要的性質。現實中采用最多的辦法是通過測試泛化誤差來評價學習方法的泛化能力。泛化誤差界刻畫了學習算法的經驗風險與期望風險之間偏差和收斂速度。一個機器學習的泛化誤差(Generalization Error),是一個描述學生機器在從樣品數據中學習之后,離教師機器之間的差距的函數。

Let $S \subseteq \mathbb{R}^2$ be a set of $n$ \emph{sites} in the plane, so that every site $s \in S$ has an \emph{associated radius} $r_s > 0$. Let $D(S)$ be the \emph{disk intersection graph} defined by $S$, i.e., the graph with vertex set $S$ and an edge between two distinct sites $s, t \in S$ if and only if the disks with centers $s$, $t$ and radii $r_s$, $r_t$ intersect. Our goal is to design data structures that maintain the connectivity structure of $D(S)$ as $S$ changes dynamically over time. We consider the incremental case, where new sites can be inserted into $S$. While previous work focuses on data structures whose running time depends on the ratio between the smallest and the largest site in $S$, we present a data structure with $O(\alpha(n))$ amortized query time and $O(\log^6 n)$ expected amortized insertion time.

Differential Privacy (DP) ensures that training a machine learning model does not leak private data. However, the cost of DP is lower model accuracy or higher sample complexity. In practice, we may have access to auxiliary public data that is free of privacy concerns. This has motivated the recent study of what role public data might play in improving the accuracy of DP models. In this work, we assume access to a given amount of public data and settle the following fundamental open questions: 1. What is the optimal (worst-case) error of a DP model trained over a private data set while having access to side public data? What algorithms are optimal? 2. How can we harness public data to improve DP model training in practice? We consider these questions in both the local and central models of DP. To answer the first question, we prove tight (up to constant factors) lower and upper bounds that characterize the optimal error rates of three fundamental problems: mean estimation, empirical risk minimization, and stochastic convex optimization. We prove that public data reduces the sample complexity of DP model training. Perhaps surprisingly, we show that the optimal error rates can be attained (up to constants) by either discarding private data and training a public model, or treating public data like it's private data and using an optimal DP algorithm. To address the second question, we develop novel algorithms which are "even more optimal" (i.e. better constants) than the asymptotically optimal approaches described above. For local DP mean estimation with public data, our algorithm is optimal including constants. Empirically, our algorithms show benefits over existing approaches for DP model training with side access to public data.

Although data-driven methods usually have noticeable performance on disease diagnosis and treatment, they are suspected of leakage of privacy due to collecting data for model training. Recently, federated learning provides a secure and trustable alternative to collaboratively train model without any exchange of medical data among multiple institutes. Therefore, it has draw much attention due to its natural merit on privacy protection. However, when heterogenous medical data exists between different hospitals, federated learning usually has to face with degradation of performance. In the paper, we propose a new personalized framework of federated learning to handle the problem. It successfully yields personalized models based on awareness of similarity between local data, and achieves better tradeoff between generalization and personalization than existing methods. After that, we further design a differentially sparse regularizer to improve communication efficiency during procedure of model training. Additionally, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly. Furthermore, we collect 5 real medical datasets, including 2 public medical image datasets and 3 private multi-center clinical diagnosis datasets, and evaluate its performance by conducting nodule classification, tumor segmentation, and clinical risk prediction tasks. Comparing with 13 existing related methods, the proposed method successfully achieves the best model performance, and meanwhile up to 60% improvement of communication efficiency. Source code is public, and can be accessed at: //github.com/ApplicationTechnologyOfMedicalBigData/pFedNet-code.

We study federated learning (FL) -- especially cross-silo FL -- with non-convex loss functions and data from people who do not trust the server or other silos. In this setting, each silo (e.g. hospital) must protect the privacy of each person's data (e.g. patient's medical record), even if the server or other silos act as adversarial eavesdroppers. To that end, we consider inter-silo record-level (ISRL) differential privacy (DP), which requires silo~$i$'s communications to satisfy record/item-level DP. We propose novel ISRL-DP algorithms for FL with heterogeneous (non-i.i.d.) silo data and two classes of Lipschitz continuous loss functions: First, we consider losses satisfying the Proximal Polyak-Lojasiewicz (PL) inequality, which is an extension of the classical PL condition to the constrained setting. In contrast to our result, prior works only considered unconstrained private optimization with Lipschitz PL loss, which rules out most interesting PL losses such as strongly convex problems and linear/logistic regression. Our algorithms nearly attain the optimal strongly convex, homogeneous (i.i.d.) rate for ISRL-DP FL without assuming convexity or i.i.d. data. Second, we give the first private algorithms for non-convex non-smooth loss functions. Our utility bounds even improve on the state-of-the-art bounds for smooth losses. We complement our upper bounds with lower bounds. Additionally, we provide shuffle DP (SDP) algorithms that improve over the state-of-the-art central DP algorithms under more practical trust assumptions. Numerical experiments show that our algorithm has better accuracy than baselines for most privacy levels. All the codes are publicly available at: //github.com/ghafeleb/Private-NonConvex-Federated-Learning-Without-a-Trusted-Server.

Most machine learning applications rely on centralized learning processes, opening up the risk of exposure of their training datasets. While federated learning (FL) mitigates to some extent these privacy risks, it relies on a trusted aggregation server for training a shared global model. Recently, new distributed learning architectures based on Peer-to-Peer Federated Learning (P2PFL) offer advantages in terms of both privacy and reliability. Still, their resilience to poisoning attacks during training has not been investigated. In this paper, we propose new backdoor attacks for P2PFL that leverage structural graph properties to select the malicious nodes, and achieve high attack success, while remaining stealthy. We evaluate our attacks under various realistic conditions, including multiple graph topologies, limited adversarial visibility of the network, and clients with non-IID data. Finally, we show the limitations of existing defenses adapted from FL and design a new defense that successfully mitigates the backdoor attacks, without an impact on model accuracy.

The high communication cost of sending model updates from the clients to the server is a significant bottleneck for scalable federated learning (FL). Among existing approaches, state-of-the-art bitrate-accuracy tradeoffs have been achieved using stochastic compression methods -- in which the client $n$ sends a sample from a client-only probability distribution $q_{\phi^{(n)}}$, and the server estimates the mean of the clients' distributions using these samples. However, such methods do not take full advantage of the FL setup where the server, throughout the training process, has side information in the form of a pre-data distribution $p_{\theta}$ that is close to the client's distribution $q_{\phi^{(n)}}$ in Kullback-Leibler (KL) divergence. In this work, we exploit this closeness between the clients' distributions $q_{\phi^{(n)}}$'s and the side information $p_{\theta}$ at the server, and propose a framework that requires approximately $D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ bits of communication. We show that our method can be integrated into many existing stochastic compression frameworks such as FedPM, Federated SGLD, and QSGD to attain the same (and often higher) test accuracy with up to $50$ times reduction in the bitrate.

Federated learning (FL) has been a hot topic in recent years. Ever since it was introduced, researchers have endeavored to devise FL systems that protect privacy or ensure fair results, with most research focusing on one or the other. As two crucial ethical notions, the interactions between privacy and fairness are comparatively less studied. However, since privacy and fairness compete, considering each in isolation will inevitably come at the cost of the other. To provide a broad view of these two critical topics, we presented a detailed literature review of privacy and fairness issues, highlighting unique challenges posed by FL and solutions in federated settings. We further systematically surveyed different interactions between privacy and fairness, trying to reveal how privacy and fairness could affect each other and point out new research directions in fair and private FL.

In federated learning, data heterogeneity is a critical challenge. A straightforward solution is to shuffle the clients' data to homogenize the distribution. However, this may violate data access rights, and how and when shuffling can accelerate the convergence of a federated optimization algorithm is not theoretically well understood. In this paper, we establish a precise and quantifiable correspondence between data heterogeneity and parameters in the convergence rate when a fraction of data is shuffled across clients. We prove that shuffling can quadratically reduce the gradient dissimilarity with respect to the shuffling percentage, accelerating convergence. Inspired by the theory, we propose a practical approach that addresses the data access rights issue by shuffling locally generated synthetic data. The experimental results show that shuffling synthetic data improves the performance of multiple existing federated learning algorithms by a large margin.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司