亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid progression in wireless communication technologies, especially in multicarrier code-division multiple access (MC-CDMA), there is a need of advanced code construction methods. Traditional approaches, mainly based on generalized Boolean functions, have limitations in code length versatility. This paper introduces a novel approach to constructing complete complementary codes (CCC) and Z-complementary code sets (ZCCS), for reducing interference in MC-CDMA systems. The proposed construction, distinct from Boolean function-based approaches, employs additive characters over Galois fields GF($p^{r}$), where $p$ is prime and $r$ is a positive integer. First, we develop CCCs with lengths of $p^{r}$, which are then extended to construct ZCCS with both unreported lengths and sizes of $np^{r}$, where $n$ are arbitrary positive integers. The versatility of this method is further highlighted as it includes the lengths of ZCCS reported in prior studies as special cases, underscoring the method's comprehensive nature and superiority.

相關內容

CCC旨在促進計算復雜性理論的所有領域的研究,研究資源約束下計算模型的絕對和相對功率。典型的模型包括確定性模型、不確定性模型、隨機模型和量子模型;均勻模型和非均勻模型;布爾模型、代數模型和連續模型。典型的資源約束包括時間、空間、隨機性、程序大小、輸入查詢、通信和糾纏;最壞情況和平均情況。其他更具體的主題包括:概率和交互證明系統、不可近似性、證明復雜性、描述復雜性以及密碼和機器學習的復雜性理論方面。會議還鼓勵其他領域的計算機科學和數學的動機計算復雜性理論。官網鏈接: · 約束 · 模型評估 · Better · MoDELS ·
2024 年 4 月 30 日

Many of the recent capabilities demonstrated by Large Language Models (LLMs) arise primarily from their ability to exploit contextual information. In this paper, we explore ways to improve reasoning capabilities of LLMs through (1) exploration of different chains of thought and (2) validation of the individual steps of the reasoning process. We propose three general principles that a model should adhere to while reasoning: (i) Relevance, (ii) Mathematical Accuracy, and (iii) Logical Consistency. We apply these constraints to the reasoning steps generated by the LLM to improve the accuracy of the final generation. The constraints are applied in the form of verifiers: the model itself is asked to verify if the generated steps satisfy each constraint. To further steer the generations towards high-quality solutions, we use the perplexity of the reasoning steps as an additional verifier. We evaluate our method on 4 distinct types of reasoning tasks, spanning a total of 9 different datasets. Experiments show that our method is always better than vanilla generation, and, in 6 out of the 9 datasets, it is better than best-of N sampling which samples N reasoning chains and picks the lowest perplexity generation.

With the emergence of Artificial Intelligence (AI)-based decision-making, explanations help increase new technology adoption through enhanced trust and reliability. However, our experimental study challenges the notion that every user universally values explanations. We argue that the agreement with AI suggestions, whether accompanied by explanations or not, is influenced by individual differences in personality traits and the users' comfort with technology. We found that people with higher neuroticism and lower technological comfort showed more agreement with the recommendations without explanations. As more users become exposed to eXplainable AI (XAI) and AI-based systems, we argue that the XAI design should not provide explanations for users with high neuroticism and low technology comfort. Prioritizing user personalities in XAI systems will help users become better collaborators of AI systems.

Public transport administrators rely on efficient algorithms for various problems that arise in public transport networks. In particular, our study focused on designing linear-time algorithms for two fundamental path problems: the earliest arrival time (\textsc{eat}) and the fastest path duration (\textsc{fpd}) on public transportation data. We conduct a comparative analysis with state-of-the-art algorithms. The results are quite promising, indicating substantial efficiency improvements. Specifically, the fastest path problem shows a remarkable 34-fold speedup, while the earliest arrival time problem exhibits an even more impressive 183-fold speedup. These findings highlight the effectiveness of our algorithms to solve \textsc{eat} and \textsc{fpd} problems in public transport, and eventually help public administrators to enrich the urban transport experience.

Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs. This method facilitates the separation of query logic from linguistic variations for enhanced debugging capabilities; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities.

With recent advancements in the sixth generation (6G) communication technologies, more vertical industries have encountered diverse network services. How to reduce energy consumption is critical to meet the expectation of the quality of diverse network services. In particular, the number of base stations in 6G is huge with coupled adjustable network parameters. However, the problem is complex with multiple network objectives and parameters. Network intents are difficult to map to individual network elements and require enhanced automation capabilities. In this paper, we present a network intent decomposition and optimization mechanism in an energy-aware radio access network scenario. By characterizing the intent ontology with a standard template, we present a generic network intent representation framework. Then we propose a novel intent modeling method using Knowledge Acquisition in automated Specification language, which can model the network ontology. To clarify the number and types of network objectives and energy-saving operations, we develop a Softgoal Interdependency Graph-based network intent decomposition model, and thus, a network intent decomposition algorithm is presented. Simulation results demonstrate that the proposed algorithm outperforms without conflict analysis in intent decomposition time. Moreover, we design a deep Q-network-assisted intent optimization scheme to validate the performance gain.

The design and optimization of Reconfigurable Intelligent Surfaces (RISs) are key challenges for future wireless communication systems. RISs are devices that can manipulate electromagnetic (EM) waves in a programmable way, thus enhancing the performance and efficiency of wireless links. To achieve this goal, it is essential to have reliable EM models that can capture the behavior of RISs in different scenarios. This work demonstrates that the Partial Elements Equivalent Circuit (PEEC) method is a powerful tool for EM analysis of RIS-aided wireless links. It might also be integrated with optimization algorithms in order to optimize wireless communication networks.

This research explores the application of Large Language Models (LLMs) for automating the extraction of requirement-related legal content in the food safety domain and checking legal compliance of regulatory artifacts. With Industry 4.0 revolutionizing the food industry and with the General Data Protection Regulation (GDPR) reshaping privacy policies and data processing agreements, there is a growing gap between regulatory analysis and recent technological advancements. This study aims to bridge this gap by leveraging LLMs, namely BERT and GPT models, to accurately classify legal provisions and automate compliance checks. Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time and financial constraints.

Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司