Are the longstanding robustness issues in NLP resolved by today's larger and more performant models? To address this question, we conduct a thorough investigation using 19 models of different sizes spanning different architectural choices and pretraining objectives. We conduct evaluations using (a) OOD and challenge test sets, (b) CheckLists, (c) contrast sets, and (d) adversarial inputs. Our analysis reveals that not all OOD tests provide further insight into robustness. Evaluating with CheckLists and contrast sets shows significant gaps in model performance; merely scaling models does not make them sufficiently robust. Finally, we point out that current approaches for adversarial evaluations of models are themselves problematic: they can be easily thwarted, and in their current forms, do not represent a sufficiently deep probe of model robustness. We conclude that not only is the question of robustness in NLP as yet unresolved, but even some of the approaches to measure robustness need to be reassessed.
In today's data-rich environment, recommender systems play a crucial role in decision support systems. They provide to users personalized recommendations and explanations about these recommendations. Embedding-based models, despite their widespread use, often suffer from a lack of interpretability, which can undermine trust and user engagement. This paper presents an approach that combines embedding-based and semantic-based models to generate post-hoc explanations in recommender systems, leveraging ontology-based knowledge graphs to improve interpretability and explainability. By organizing data within a structured framework, ontologies enable the modeling of intricate relationships between entities, which is essential for generating explanations. By combining embedding-based and semantic based models for post-hoc explanations in recommender systems, the framework we defined aims at producing meaningful and easy-to-understand explanations, enhancing user trust and satisfaction, and potentially promoting the adoption of recommender systems across the e-commerce sector.
Compared to the generations up to 4G, whose main focus was on broadband and coverage aspects, 5G has expanded the scope of wireless cellular systems towards embracing two new types of connectivity: massive machine-type communication (mMTC) and ultra-reliable low-latency communications (URLLC). This paper will discuss the possible evolution of these two types of connectivity within the umbrella of 6G wireless systems. The paper consists of three parts. The first part deals with the connectivity for a massive number of devices. While mMTC research in 5G was predominantly focused on the problem of uncoordinated access in the uplink for a large number of devices, the traffic patterns in 6G may become more symmetric, leading to closed-loop massive connectivity. One of the drivers for this is distributed learning/inference. The second part of the paper will discuss the evolution of wireless connectivity for critical services. While latency and reliability are tightly coupled in 5G, 6G will support a variety of safety critical control applications with different types of timing requirements, as evidenced by the emergence of metrics related to information freshness and information value. Additionally, ensuring ultra-high reliability for safety critical control applications requires modeling and estimation of the tail statistics of the wireless channel, queue length, and delay. The fulfillment of these stringent requirements calls for the development of novel AI-based techniques, incorporating optimization theory, explainable AI, generative AI and digital twins. The third part will analyze the coexistence of massive connectivity and critical services. We will consider scenarios in which a massive number of devices need to support traffic patterns of mixed criticality. This will be followed by a discussion about the management of wireless resources shared by services with different criticality.
In the largest survey of its kind, 2,778 researchers who had published in top-tier artificial intelligence (AI) venues gave predictions on the pace of AI progress and the nature and impacts of advanced AI systems The aggregate forecasts give at least a 50% chance of AI systems achieving several milestones by 2028, including autonomously constructing a payment processing site from scratch, creating a song indistinguishable from a new song by a popular musician, and autonomously downloading and fine-tuning a large language model. If science continues undisrupted, the chance of unaided machines outperforming humans in every possible task was estimated at 10% by 2027, and 50% by 2047. The latter estimate is 13 years earlier than that reached in a similar survey we conducted only one year earlier [Grace et al., 2022]. However, the chance of all human occupations becoming fully automatable was forecast to reach 10% by 2037, and 50% as late as 2116 (compared to 2164 in the 2022 survey). Most respondents expressed substantial uncertainty about the long-term value of AI progress: While 68.3% thought good outcomes from superhuman AI are more likely than bad, of these net optimists 48% gave at least a 5% chance of extremely bad outcomes such as human extinction, and 59% of net pessimists gave 5% or more to extremely good outcomes. Between 38% and 51% of respondents gave at least a 10% chance to advanced AI leading to outcomes as bad as human extinction. More than half suggested that "substantial" or "extreme" concern is warranted about six different AI-related scenarios, including misinformation, authoritarian control, and inequality. There was disagreement about whether faster or slower AI progress would be better for the future of humanity. However, there was broad agreement that research aimed at minimizing potential risks from AI systems ought to be prioritized more.
Background: Code review, the discussion around a code change among humans, forms a communication network that enables its participants to exchange and spread information. Although reported by qualitative studies, our understanding of the capability of code review as a communication network is still limited. Objective: In this article, we report on a first step towards evaluating the capability of code review as a communication network by quantifying how fast and how far information can spread through code review: the upper bound of information diffusion in code review. Method: In an in-silico experiment, we simulate an artificial information diffusion within large (Microsoft), mid-sized (Spotify), and small code review systems (Trivago) modelled as communication networks. We then measure the minimal topological and temporal distances between the participants to quantify how far and how fast information can spread in code review. Results: An average code review participants in the small and mid-sized code review systems can spread information to between 72% and 85% of all code review participants within four weeks independently of network size and tooling; for the large code review systems, we found an absolute boundary of about 11000 reachable participants. On average (median), information can spread between two participants in code review in less than five hops and less than five days. Conclusion: We found evidence that the communication network emerging from code review scales well and spreads information fast and broadly, corroborating the findings of prior qualitative work. The study lays the foundation for understanding and improving code review as a communication network.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.