Speech is a natural interface for humans to interact with robots. Yet, aligning a robot's voice to its appearance is challenging due to the rich vocabulary of both modalities. Previous research has explored a few labels to describe robots and tested them on a limited number of robots and existing voices. Here, we develop a robot-voice creation tool followed by large-scale behavioral human experiments (N=2,505). First, participants collectively tune robotic voices to match 175 robot images using an adaptive human-in-the-loop pipeline. Then, participants describe their impression of the robot or their matched voice using another human-in-the-loop paradigm for open-ended labeling. The elicited taxonomy is then used to rate robot attributes and to predict the best voice for an unseen robot. We offer a web interface to aid engineers in customizing robot voices, demonstrating the synergy between cognitive science and machine learning for engineering tools.
The rise of automation has provided an opportunity to achieve higher efficiency in manufacturing processes, yet it often compromises the flexibility required to promptly respond to evolving market needs and meet the demand for customization. Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding. In this paper, we conceptualize and propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles and leverages Extended Reality (XR) to facilitate intuitive communication and programming between humans and robots. Furthermore, the conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization. The paper highlights key technologies enabling the proposed framework, emphasizing the importance of developing the digital ecosystem as a whole. Additionally, we review the existent implementation approaches of XR in human-robot collaboration, showcasing diverse perspectives and methodologies. The challenges and future outlooks are discussed, delving into the major obstacles and potential research avenues of XR for more natural human-robot interaction and integration in the industrial landscape.
Communication robots have the potential to contribute to effective human-XAI interaction as an interface that goes beyond textual or graphical explanations. One of their strengths is that they can use physical and vocal expressions to add detailed nuances to explanations. However, it is not clear how a robot can apply such expressions, or in particular, how we can develop a strategy to adaptively use such expressions depending on the task and user in dynamic interactions. To address this question, this paper proposes DynEmph, a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions. It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones. DynEmph features a strategy for deciding where to emphasize in a data-driven manner, relieving engineers from the need to manually design a strategy. We further conducted experiments to investigate how emphasis selection strategies affect the performance of user decisions. The results suggest that, while a naive strategy (emphasizing explanations for an AI's most probable class) does not necessarily work better, DynEmph effectively guides users to better decisions under the condition that the performance of the AI suggestion is high.
Safe and efficient object manipulation is a key enabler of many real-world robot applications. However, this is challenging because robot operation must be robust to a range of sensor and actuator uncertainties. In this paper, we present a physics-informed causal-inference-based framework for a robot to probabilistically reason about candidate actions in a block stacking task in a partially observable setting. We integrate a physics-based simulation of the rigid-body system dynamics with a causal Bayesian network (CBN) formulation to define a causal generative probabilistic model of the robot decision-making process. Using simulation-based Monte Carlo experiments, we demonstrate our framework's ability to successfully: (1) predict block tower stability with high accuracy (Pred Acc: 88.6%); and, (2) select an approximate next-best action for the block stacking task, for execution by an integrated robot system, achieving 94.2% task success rate. We also demonstrate our framework's suitability for real-world robot systems by demonstrating successful task executions with a domestic support robot, with perception and manipulation sub-system integration. Hence, we show that by embedding physics-based causal reasoning into robots' decision-making processes, we can make robot task execution safer, more reliable, and more robust to various types of uncertainty.
Advancements in vision-language models (VLMs) have propelled the field of computer vision, particularly in the zero-shot learning setting. Despite their promise, the effectiveness of these models often diminishes due to domain shifts in test environments. To address this, we introduce the Test-Time Prototype Shifting (TPS) framework, a pioneering approach designed to adapt VLMs to test datasets using unlabeled test inputs. Our method is based on the notion of modulating per-class prototypes in the shared embedding space. By pre-computing and caching prototypes generated with the pre-trained text encoder, TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering. At test-time, TPS dynamically learns shift vectors for each prototype based solely on the given test sample, effectively bridging the domain gap and enhancing classification accuracy. A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods. Extensive evaluations across 15 datasets involving natural distribution shifts and cross-dataset generalization demonstrate TPS's superior performance, achieving state-of-the-art results while reducing resource requirements.
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
Under-actuated robot grippers as a pervasive tool of robots have become a considerable research focus. Despite their simplicity of mechanical design and control strategy, they suffer from poor versatility and weak adaptability, making widespread applications limited. To better relieve relevant research gaps, we present a novel 3-finger linkage-based gripper that realizes retractable and reconfigurable multi-mode grasps driven by a single motor. Firstly, inspired by the changes that occurred in the contact surface with a human finger moving, we artfully design a slider-slide rail mechanism as the phalanx to achieve retraction of each finger, allowing for better performance in the enveloping grasping mode. Secondly, a reconfigurable structure is constructed to broaden the grasping range of objects' dimensions for the proposed gripper. By adjusting the configuration and gesture of each finger, the gripper can achieve five grasping modes. Thirdly, the proposed gripper is just actuated by a single motor, yet it can be capable of grasping and reconfiguring simultaneously. Finally, various experiments on grasps of slender, thin, and large-volume objects are implemented to evaluate the performance of the proposed gripper in practical scenarios, which demonstrates the excellent grasping capabilities of the gripper.
Datalog is a powerful yet elegant language that allows expressing recursive computation. Although Datalog evaluation has been extensively studied in the literature, so far, only loose upper bounds are known on how fast a Datalog program can be evaluated. In this work, we ask the following question: given a Datalog program over a naturally-ordered semiring $\sigma$, what is the tightest possible runtime? To this end, our main contribution is a general two-phase framework for analyzing the data complexity of Datalog over $\sigma$: first ground the program into an equivalent system of polynomial equations (i.e. grounding) and then find the least fixpoint of the grounding over $\sigma$. We present algorithms that use structure-aware query evaluation techniques to obtain the smallest possible groundings. Next, efficient algorithms for fixpoint evaluation are introduced over two classes of semirings: (1) finite-rank semirings and (2) absorptive semirings of total order. Combining both phases, we obtain state-of-the-art and new algorithmic results. Finally, we complement our results with a matching fine-grained lower bound.
Emotion is vital to information and message processing, playing a key role in attitude formation. Consequently, creating a mood that evokes an emotional response is essential to any compelling piece of outreach communication. Many nonprofits and charities, despite having established messages, face challenges in creating advocacy campaign videos for social media. It requires significant creative and cognitive efforts to ensure that videos achieve the desired mood across multiple dimensions: script, visuals, and audio. We introduce MoodSmith, an AI-powered system that helps users explore mood possibilities for their message and create advocacy campaigns that are mood-consistent across dimensions. To achieve this, MoodSmith uses emotive language and plotlines for scripts, artistic style and color palette for visuals, and positivity and energy for audio. Our studies show that MoodSmith can effectively achieve a variety of moods, and the produced videos are consistent across media dimensions.
Language, a prominent human ability to express through sequential symbols, has been computationally mastered by recent advances of large language models (LLMs). By predicting the next word recurrently with huge neural models, LLMs have shown unprecedented capabilities in understanding and reasoning. Circuit, as the "language" of electronic design, specifies the functionality of an electronic device by cascade connections of logic gates. Then, can circuits also be mastered by a a sufficiently large "circuit model", which can conquer electronic design tasks by simply predicting the next logic gate? In this work, we take the first step to explore such possibilities. Two primary barriers impede the straightforward application of LLMs to circuits: their complex, non-sequential structure, and the intolerance of hallucination due to strict constraints (e.g., equivalence). For the first barrier, we encode a circuit as a memory-less, depth-first traversal trajectory, which allows Transformer-based neural models to better leverage its structural information, and predict the next gate on the trajectory as a circuit model. For the second barrier, we introduce an equivalence-preserving decoding process, which ensures that every token in the generated trajectory adheres to the specified equivalence constraints. Moreover, the circuit model can also be regarded as a stochastic policy to tackle optimization-oriented circuit design tasks. Experimentally, we trained a Transformer-based model of 88M parameters, named "Circuit Transformer", which demonstrates impressive performance in end-to-end logic synthesis. With Monte-Carlo tree search, Circuit Transformer significantly improves over resyn2 while retaining strict equivalence, showcasing the potential of generative AI in conquering electronic design challenges.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.